On the linearized Whitham-Broer-Kaup system on bounded domains

被引:0
|
作者
Liverani, L. [1 ]
Mammeri, Y. [2 ]
Pata, V. [3 ]
Quintanilla, R. [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Edificio U5,Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Jean Monnet, CNRS, Inst Camille Jordan, UMR 5208, 23Rue Dr Paul Michelon, F-42100 Saint Etienne, France
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Univ Politecn Cataluna, Dept Matematiques, C Colom 11, Terrassa 08222, Barcelona, Spain
关键词
Whitham-Broer-Kaup system; dispersive equations; spectrum; linear semigroups; TRAVELING-WAVE SOLUTIONS; EQUATIONS; EXPLICIT;
D O I
10.1017/prm.2023.85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of partial differential equations {eta(t) - alpha u(xxx) - beta eta(xx) = 0 u(t) + eta(x) + beta u(xx) = 0 on bounded domains, known in the literature as the Whitham-Broer-Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number x = alpha - beta(2). In particular, existence and uniqueness occur if and only if x > 0. In which case, an explicit representation for the solutions is given. Nonetheless, for the case x <= 0 we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Shape analysis of bounded traveling wave solutions and solution to the generalized Whitham-Broer-Kaup equation with dissipation terms
    Weiguo Zhang
    Qiang Liu
    Xiang Li
    Boling Guo
    Chinese Annals of Mathematics, Series B, 2012, 33 : 281 - 308
  • [42] Exact solutions to the space-time fraction Whitham-Broer-Kaup equation
    Cao, Damin
    Li, Cheng
    He, Fajiang
    MODERN PHYSICS LETTERS B, 2020, 34 (16):
  • [43] Shape Analysis of Bounded Traveling Wave Solutions and Solution to the Generalized Whitham-Broer-Kaup Equation with Dissipation Terms
    Weiguo ZHANG 1 Qiang LIU 2 Xiang LI 3 Boling GUO 4 1 Corresponding author.School of Science
    Department of Mathematics and Information Science
    Chinese Annals of Mathematics(Series B), 2012, 33 (02) : 281 - 308
  • [44] Shape analysis of bounded traveling wave solutions and solution to the generalized Whitham-Broer-Kaup equation with dissipation terms
    Zhang, Weiguo
    Liu, Qiang
    Li, Xiang
    Guo, Boling
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (02) : 281 - 308
  • [45] Extended double Wronskian solutions to the Whitham-Broer-Kaup equations in shallow water
    Lin, Guo-Dong
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    NONLINEAR DYNAMICS, 2011, 64 (1-2) : 197 - 206
  • [46] Application of New Iterative Method to Time Fractional Whitham-Broer-Kaup Equations
    Nawaz, Rashid
    Kumam, Poom
    Farid, Samreen
    Shutaywi, Meshal
    Shah, Zahir
    Deebani, Wejdan
    FRONTIERS IN PHYSICS, 2020, 8 (08):
  • [47] Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water
    Fan, EG
    Zhang, HQ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (08) : 713 - 716
  • [48] Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations
    Ali, Amjad
    Shah, Kamal
    Khan, Rahmat Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1991 - 1998
  • [49] New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations
    Ping, Zhang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1688 - 1696
  • [50] Different Groups of Variational Principles for Whitham-Broer-Kaup Equations in Shallow Water
    Cao, Xiao-Qun
    Guo, Ya-Nan
    Zhang, Cheng-Zhuo
    Hou, Shi-Cheng
    Peng, Ke-Cheng
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1178 - 1183