An efficient technique to study of time fractional Whitham-Broer-Kaup equations

被引:1
|
作者
Bhatnagar, Nishant [1 ,2 ]
Modi, Kanak [1 ]
Yadav, Lokesh Kumar [2 ]
Dubey, Ravi Shanker [1 ]
机构
[1] Amity Univ Rajasthan, Amity Sch Appl Sci, Dept Math, Jaipur, India
[2] Vivekananda Global Univ, Dept Math, Jaipur 303012, Rajasthan, India
关键词
Fractional-coupled Whitham-Broer-Kaup equations; homotopy analysis method; p-Laplace transform; generalized Caputo derivative; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; MODEL; LAPLACE;
D O I
10.1142/S2661335224500242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we derive the approximate analytical solution for the fractional coupled Whitham-Broer-Kaup (WBK) equations, a significant mathematical model for representing wave propagation in shallow water. The solution is obtained through the utilization of the q-homotopy analysis rho-Laplace transform method (q-HAL(rho)TM), a hybrid approach combining rho-Laplace transformation and the homotopy analysis method. Homotopy polynomials are employed to address nonlinear terms, and the introduced algorithm incorporates the auxiliary parameter h to regulate and fine-tune the convergence region of the resulting series solution. Comparative numerical analyses are conducted with outcomes from the Adomian decomposition method (ADM), variational iteration method (VIM), and optimal homotopy asymptotic method (OHAM), demonstrating the superior accuracy of the proposed method. The method's novelty and straightforward implementation establish it as a reliable and efficient analytical technique for solving both linear and nonlinear fractional partial differential equations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON FRACTIONAL COUPLED WHITHAM-BROER-KAUP EQUATIONS
    Kadem, Abdelouahab
    Baleanu, Dumitru
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 (5-6): : 629 - 635
  • [2] Application of New Iterative Method to Time Fractional Whitham-Broer-Kaup Equations
    Nawaz, Rashid
    Kumam, Poom
    Farid, Samreen
    Shutaywi, Meshal
    Shah, Zahir
    Deebani, Wejdan
    FRONTIERS IN PHYSICS, 2020, 8 (08):
  • [3] A HYBRID METHOD FOR THE ANALYTICAL SOLUTION OF TIME FRACTIONAL WHITHAM-BROER-KAUP EQUATIONS
    Agarwal, G.
    Yadav, L. K.
    Nisar, K. S.
    Alqarni, M. M.
    Mahmoud, E. E.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2024, 23 (01) : 3 - 17
  • [4] An Efficient Technique for Coupled Fractional Whitham-Broer-Kaup Equations Describing the Propagation of Shallow Water Waves
    Veeresha, P.
    Prakasha, D. G.
    Baskonus, Haci Mehmet
    4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 49 - 75
  • [5] Symmetry analysis for Whitham-Broer-Kaup equations
    Zhang, Zhiyong
    Yong, Xuelin
    Chen, Yufu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (04) : 383 - 397
  • [6] Symmetry analysis for Whitham-Broer-Kaup equations
    Zhiyong Zhang
    Xuelin Yong
    Yufu Chen
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 383 - 397
  • [7] Fractional Whitham-Broer-Kaup Equations within Modified Analytical Approaches
    Shah, Rasool
    Khan, Hassan
    Baleanu, Dumitru
    AXIOMS, 2019, 8 (04)
  • [8] On the approximate solution of fractional-order Whitham-Broer-Kaup equations
    Khan, Hassan
    Gomez-Aguilar, J. F.
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    MODERN PHYSICS LETTERS B, 2021, 35 (11):
  • [9] LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR TIME FRACTIONAL COUPLED WHITHAM-BROER-KAUP EQUATIONS
    Ghehsareh, Hadi Roohani
    Majlesi, Ahmad
    Zaghian, Ali
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 153 - 168
  • [10] Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations
    Ali, Amjad
    Shah, Kamal
    Khan, Rahmat Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1991 - 1998