TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
|
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [21] Deep video action clustering via spatio-temporal feature learning
    Peng, Bo
    Lei, Jianjun
    Fu, Huazhu
    Jia, Yalong
    Zhang, Zongqian
    Li, Yi
    NEUROCOMPUTING, 2021, 456 : 519 - 527
  • [22] A Spatio-Temporal Feature Trajectory Clustering Algorithm Based on Deep Learning
    He, Xintai
    Li, Qing
    Wang, Runze
    Chen, Kun
    ELECTRONICS, 2022, 11 (15)
  • [23] DSTF: A Diversified Spatio-Temporal Feature Extraction Model for traffic flow prediction
    Wang, Xing
    Wang, Xiaojun
    Huang, Faliang
    Zou, Fumin
    Liao, Lyuchao
    Zeng, Ruihao
    NEUROCOMPUTING, 2025, 621
  • [24] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [25] Spatio-Temporal Abnormal Behavior Prediction in Elderly Persons Using Deep Learning Models
    Zerkouk, Meriem
    Chikhaoui, Belkacem
    SENSORS, 2020, 20 (08)
  • [26] Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
    Hu, R.
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    JOURNAL OF HYDROLOGY, 2019, 575 : 911 - 920
  • [27] Spatio-temporal water height prediction for dam break flows using deep learning
    Deng, Yangyu
    Zhang, Di
    Cao, Ze
    Liu, Yakun
    OCEAN ENGINEERING, 2024, 302
  • [28] MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION
    Tan, Tian
    Venugopal, Vengatesan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [29] Temporal Graph Attention Network for Spatio-Temporal Feature Extraction in Research Topic Trend Prediction
    Guo, Zhan
    Lu, Mingxin
    Han, Jin
    MATHEMATICS, 2025, 13 (05)
  • [30] Spatio-Temporal Feature Extraction and Distance Metric Learning for Unconstrained Action Recognition
    Yoon, Yongsang
    Yu, Jongmin
    Jeon, Moongu
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,