TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
|
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [31] Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models
    Varghese, Ken Koshy
    Mahdaviabbasabad, Sajjad
    Gentile, Guido
    Eldafrawi, Mohamed
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2023, 24 (01) : 22 - 32
  • [32] Cross-City Transfer Learning for Deep Spatio-Temporal Prediction
    Wang, Leye
    Geng, Xu
    Ma, Xiaojuan
    Liu, Feng
    Yang, Qiang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1893 - 1899
  • [33] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    ENERGIES, 2018, 11 (04)
  • [34] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478
  • [35] A spatio-temporal network for human activity prediction based on deep learning
    Li J.
    Liu H.
    Guo W.
    Chen X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (04): : 522 - 531
  • [36] Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning
    Qin, Huiling
    Ke, Songyu
    Yang, Xiaodu
    Xu, Haoran
    Zhan, Xianyuan
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4312 - 4319
  • [37] A spatio-temporal network for landslide displacement prediction based on deep learning
    Luo H.
    Jiang Y.
    Xu Q.
    Liao L.
    Yan A.
    Liu C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2160 - 2170
  • [38] Spatio-temporal attention-based hybrid deep network for time series prediction of industrial process
    Lu, Dong
    Zhou, Xiaofeng
    Li, Shuai
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [39] Action Recognition Based on Efficient Deep Feature Learning in the Spatio-Temporal Domain
    Husain, Farzad
    Dellen, Babette
    Torras, Carme
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02): : 984 - 991
  • [40] Spatio-Temporal Feature Engineering for Deep Learning Models in Traffic Flow Forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    IEEE ACCESS, 2024, 12 : 76555 - 76578