TSFEDL: A python']python library for time series spatio-temporal feature extraction and prediction using deep learning

被引:5
|
作者
Aguilera-Martos, Ignacio [1 ,3 ]
Garcia-Vico, Angel M. [1 ,3 ]
Luengo, Julian [1 ,3 ]
Damas, Sergio [2 ,3 ]
Melero, Francisco J. [2 ,3 ]
Javier Valle-Alonso, Jose [4 ]
Herrera, Francisco [1 ,3 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Univ Granada, Dept Software Engn, Granada, Spain
[3] Andalusian Inst Data Sci & Computat Intelligence, Granada, Spain
[4] Repsol Technol Lab, Madrid, Spain
关键词
Time series; Deep learning; !text type='Python']Python[!/text; ARRHYTHMIA; NETWORK;
D O I
10.1016/j.neucom.2022.10.062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [41] Action recognition method of spatio-temporal feature fusion deep learning network
    Pei, Xiaomin
    Fan, Huijie
    Tang, Yandong
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2018, 47 (02):
  • [42] TrajectoryCNN: A New Spatio-Temporal Feature Learning Network for Human Motion Prediction
    Liu, Xiaoli
    Yin, Jianqin
    Liu, Jin
    Ding, Pengxiang
    Liu, Jun
    Liu, Huaping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (06) : 2133 - 2146
  • [43] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [44] Urban Traffic Travel Time Short-Term Prediction Model Based on Spatio-Temporal Feature Extraction
    Kang, Leilei
    Hu, Guojing
    Huang, Hao
    Lu, Weike
    Liu, Lan
    Journal of Advanced Transportation, 2020, 2020
  • [45] Urban Traffic Travel Time Short-Term Prediction Model Based on Spatio-Temporal Feature Extraction
    Kang, Leilei
    Hu, Guojing
    Huang, Hao
    Lu, Weike
    Liu, Lan
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020 : 1DUMMMY
  • [46] Spatio-temporal graph neural network based on time series periodic feature fusion for traffic flow prediction
    Chen, Guihui
    Wei, Yuli
    Peng, Jiao
    Zheng, Xinyu
    Lu, Kai
    Li, Zhongbing
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [47] Spatio-Temporal Consistency for Multivariate Time-Series Representation Learning
    Lee, Sangho
    Kim, Wonjoon
    Son, Youngdoo
    IEEE ACCESS, 2024, 12 : 30962 - 30975
  • [48] Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
    Hengl, Tomislav
    Heuvelink, Gerard B. M.
    Tadic, Melita Percec
    Pebesma, Edzer J.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2012, 107 (1-2) : 265 - 277
  • [49] Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
    Tomislav Hengl
    Gerard B. M. Heuvelink
    Melita Perčec Tadić
    Edzer J. Pebesma
    Theoretical and Applied Climatology, 2012, 107 : 265 - 277
  • [50] A link prediction method for MANETs based on fast spatio-temporal feature extraction and LSGANs
    Hao Shao
    Lunwen Wang
    Hui Liu
    Rangang Zhu
    Scientific Reports, 12