Intrinsic Marguerre-von Karman equations

被引:0
|
作者
Ciarlet, Philippe G. [1 ]
Mardare, Cristinel [2 ,3 ]
机构
[1] City Univ Hong Kong, Hong Kong Inst Adv Study, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Sorbonne Univ, Lab Jacques Louis Lions, BC 187, F-75252 Paris 05, France
关键词
Marguerre-von Karman equations; shallow shells; nonlinear elasticity; intrinsic equations; existence theory; FORMULATION; SHELL;
D O I
10.1177/10812865231182070
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We first show how the classical Marguerre-von Karman equations modeling the deformation of a nonlinearly elastic shallow shell can be recast as equations whose sole unknowns are the bending moments and stress resultants inside the middle surface of the shell. Thus, these equations allow to compute the stresses inside the shell without having to compute first the displacement field. We then show that the boundary value problem formed by these new equations is well posed by establishing an existence theorem.
引用
收藏
页码:386 / 400
页数:15
相关论文
共 50 条
  • [31] Multiple bifurcation in the von Karman equations
    Chien, CS
    Chen, MS
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1737 - 1766
  • [32] Multiple bifurcation in the von Karman equations
    Chien, C.-S.
    Chen, M.-S.
    SIAM Journal of Scientific Computing, 1997, 18 (06): : 1737 - 1766
  • [33] Von Karman Equations in Lp Spaces
    Fattorusso, Luisa
    Tarsia, Antonio
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [34] ON NONUNIQUENESS OF SOLUTIONS OF VON KARMAN EQUATIONS
    KNIGHTLY, GH
    SATHER, D
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1970, 36 (01) : 65 - &
  • [35] Von Karman equations in Lp spaces
    Fattorusso, Luisa
    Tarsia, Antonio
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2375 - 2391
  • [36] BOUNDARY STABILIZATION FOR THE VON KARMAN EQUATIONS
    PUEL, JP
    TUCSNAK, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) : 255 - 273
  • [37] Mode jumping in the von Karman equations
    Chien, CS
    Gong, SY
    Mei, Z
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (04): : 1354 - 1385
  • [38] Removable singularities for the Von Karman equations
    DiFiore, Lawrence B.
    Shapiro, Victor L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 550 - 564
  • [40] On the generalized von Karman equations and their approximation
    Ciarlet, Philippe G.
    Gratie, Liliana
    Kesavan, Srinivasan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (04): : 617 - 633