Intrinsic Marguerre-von Karman equations

被引:0
|
作者
Ciarlet, Philippe G. [1 ]
Mardare, Cristinel [2 ,3 ]
机构
[1] City Univ Hong Kong, Hong Kong Inst Adv Study, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Sorbonne Univ, Lab Jacques Louis Lions, BC 187, F-75252 Paris 05, France
关键词
Marguerre-von Karman equations; shallow shells; nonlinear elasticity; intrinsic equations; existence theory; FORMULATION; SHELL;
D O I
10.1177/10812865231182070
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We first show how the classical Marguerre-von Karman equations modeling the deformation of a nonlinearly elastic shallow shell can be recast as equations whose sole unknowns are the bending moments and stress resultants inside the middle surface of the shell. Thus, these equations allow to compute the stresses inside the shell without having to compute first the displacement field. We then show that the boundary value problem formed by these new equations is well posed by establishing an existence theorem.
引用
收藏
页码:386 / 400
页数:15
相关论文
共 50 条
  • [41] On the range of applicability of von Karman plate equations
    Zhou, You-He
    Zheng, Xiao-Jing
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (03): : 724 - 726
  • [42] Inertial Manifolds for von Karman Plate Equations
    Applied Mathematics & Optimization, 2002, 46 : 179 - 206
  • [43] Exponential decay for a von Karman equations with memory
    Kang, Jum-Ran
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [44] Symmetry and scaling properties of the von Karman equations
    Chien, CS
    Kuo, YJ
    Mei, Z
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (05): : 710 - 729
  • [45] A virtual element method for the von Karman equations
    Lovadina, Carlo
    Mora, David
    Velasquez, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (02) : 533 - 560
  • [46] Inertial manifolds for von Karman plate equations
    Chueshov, I
    Lasiecka, I
    APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3): : 179 - 206
  • [48] APPLICATION OF KIKUCHIS METHOD TO THE VON KARMAN EQUATIONS
    KESAVAN, S
    NUMERISCHE MATHEMATIK, 1979, 32 (02) : 209 - 232
  • [49] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07): : 669 - 676
  • [50] Integral bounds for von Karman's equations
    Mareno, Anita
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (06): : 509 - 513