Intrinsic Marguerre-von Karman equations

被引:0
|
作者
Ciarlet, Philippe G. [1 ]
Mardare, Cristinel [2 ,3 ]
机构
[1] City Univ Hong Kong, Hong Kong Inst Adv Study, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Sorbonne Univ, Lab Jacques Louis Lions, BC 187, F-75252 Paris 05, France
关键词
Marguerre-von Karman equations; shallow shells; nonlinear elasticity; intrinsic equations; existence theory; FORMULATION; SHELL;
D O I
10.1177/10812865231182070
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We first show how the classical Marguerre-von Karman equations modeling the deformation of a nonlinearly elastic shallow shell can be recast as equations whose sole unknowns are the bending moments and stress resultants inside the middle surface of the shell. Thus, these equations allow to compute the stresses inside the shell without having to compute first the displacement field. We then show that the boundary value problem formed by these new equations is well posed by establishing an existence theorem.
引用
收藏
页码:386 / 400
页数:15
相关论文
共 50 条
  • [21] Existence Result for a Dynamical Equations of Generalized Marguerre-von Kármán Shallow Shells
    D. A. Chacha
    A. Ghezal
    A. Bensayah
    Journal of Elasticity, 2013, 111 : 265 - 283
  • [22] APPROXIMATE SOLUTION TO THE FOPPL-KARMAN-MARGUERRE EQUATIONS
    SADOVSKY, Z
    MECHANICS RESEARCH COMMUNICATIONS, 1989, 16 (01) : 45 - 51
  • [23] Global Existence and Uniqueness of Weak Solution to Nonlinear Viscoelastic Full Marguerre-von Kármán Shallow Shell Equations
    Fu Shan LISchool of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2009, 25 (12) : 2133 - 2156
  • [24] Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations
    Fu Shan Li
    Acta Mathematica Sinica, English Series, 2009, 25 : 2133 - 2156
  • [25] Von Karman Equations
    Fattorusso, Luisa
    Tarsia, Antonio
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 286 - +
  • [26] OPTIMAL CONTROL PROBLEMS GOVERNED BY MARGUERRE-VON K <acute accent>ARM <acute accent>AN EVOLUTION EQUATIONS WITH LONG MEMORY
    Mechaouf, Abir
    Ghezal, Abderrezak
    Ghanem, Radouen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [27] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 329 - 335
  • [28] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 263 - 279
  • [29] On nonstationary von Karman equations
    Bock, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (10): : 559 - 571
  • [30] HYPERBOLIC EQUATIONS OF VON KARMAN TYPE
    Cherrier, Pascal
    Milani, Albert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 125 - 137