On the generalized von Karman equations and their approximation

被引:3
|
作者
Ciarlet, Philippe G.
Gratie, Liliana
Kesavan, Srinivasan
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Peoples R China
[2] City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Peoples R China
[3] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
关键词
nonlinear plate theory; Brouwer's theorem; finite element method;
D O I
10.1142/S0218202507002042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here the " generalized von Karman equations", which constitute a mathematical model for a nonlinearly elastic plate subjected to boundary conditions " of von Karman type" only on a portion of its lateral face, the remaining portion being free. As already shown elsewhere, solving these equations amounts to solving a " cubic" operator equation, which generalizes an equation introduced by Berger and Fife. Two noticeable features of this equation, which are not encountered in the " classical" von Karman equations are the lack of strict positivity of its cubic part and the lack of an associated functional. We establish here the convergence of a conforming finite element approximation to these equations. The proof relies in particular on a compactness method due to J. L. Lions and on Brouwer's fixed point theorem. This convergence proof provides in addition an existence proof for the original problem.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 50 条
  • [1] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 329 - 335
  • [2] Generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 263 - 279
  • [3] From the classical to the generalized von Karman and Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 470 - 486
  • [4] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07): : 669 - 676
  • [5] Numerical analysis of the generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Kesavan, S
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (11) : 695 - 699
  • [6] An existence theorem for generalized von Karman equations
    Ciarlet, PG
    Gratie, L
    Sabu, N
    JOURNAL OF ELASTICITY, 2001, 62 (03) : 239 - 248
  • [7] A NONCONFORMING FINITE ELEMENT APPROXIMATION FOR THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 433 - 454
  • [8] On the existence of solutions to the generalized Marguerre-von Karman equations
    Ciarlet, PG
    Gratie, L
    MATHEMATICS AND MECHANICS OF SOLIDS, 2006, 11 (01) : 83 - 100
  • [9] Von Karman Equations
    Fattorusso, Luisa
    Tarsia, Antonio
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 286 - +
  • [10] Global well posedness of the dynamic von Karman equations for generalized solutions
    Bohm, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (03) : 339 - 351