The Bulk-Surface Virtual Element Method for Reaction-Diffusion PDEs: Analysis and Applications

被引:11
|
作者
Frittelli, Massimo [1 ]
Madzvamuse, Anotida [2 ,3 ,4 ]
Sgura, Ivonne [1 ]
机构
[1] Univ Salento, Dept Math & Phys E Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, England
[4] Univ Pretoria, Dept Math & Appl Math, Private Bag x 20, ZA-0028 Hatfield, South Africa
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
  Bulk-surface PDEs; bulk-surface reaction-diffusion systems; polyhedral meshes; bulk-; surface virtual element method; convergence; MODEL; SYSTEMS;
D O I
10.4208/cicp.OA-2022-0204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.
引用
收藏
页码:733 / 763
页数:31
相关论文
共 50 条
  • [1] The bulk-surface finite element method for reaction-diffusion systems on stationary volumes
    Madzyamuse, Anotida
    Chung, Andy H. W.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 108 : 9 - 21
  • [2] Virtual element method for elliptic bulk-surface PDEs in three space dimensions
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4221 - 4247
  • [3] Bulk-surface virtual element method for systems of PDEs in two-space dimensions
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERISCHE MATHEMATIK, 2021, 147 (02) : 305 - 348
  • [4] Bulk-surface virtual element method for systems of PDEs in two-space dimensions
    Massimo Frittelli
    Anotida Madzvamuse
    Ivonne Sgura
    Numerische Mathematik, 2021, 147 : 305 - 348
  • [5] Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems
    Madzvamuse, Anotida
    Chung, Andy H. W.
    Venkataraman, Chandrasekhar
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175):
  • [6] A bulk-surface reaction-diffusion system for cell polarization
    Niethammer, Barbara
    Roeger, Matthias
    Velazquez, Juan J. L.
    INTERFACES AND FREE BOUNDARIES, 2020, 22 (01) : 85 - 117
  • [7] Analysis and Simulations of Coupled Bulk-surface Reaction-Diffusion Systems on Exponentially Evolving Volumes
    Madzvamuse, A.
    Chung, A. H.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (05) : 4 - 32
  • [8] Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks
    Raetz, Andreas
    Roeger, Matthias
    NONLINEARITY, 2014, 27 (08) : 1805 - 1827
  • [9] Turing-type instabilities in bulk-surface reaction-diffusion systems
    Raetz, Andreas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 142 - 152
  • [10] ANALYSIS AND ASYMPTOTIC REDUCTION OF A BULK-SURFACE REACTION-DIFFUSION MODEL OF GIERER-MEINHARDT TYPE
    Baecker, Jan-Phillip
    Roeger, Matthias
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (04) : 1139 - 1155