Bulk-surface virtual element method for systems of PDEs in two-space dimensions

被引:14
|
作者
Frittelli, Massimo [1 ]
Madzvamuse, Anotida [2 ]
Sgura, Ivonne [1 ,3 ,4 ]
机构
[1] Univ Salento, Dept Math & Phys E De Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, E Sussex, England
[3] Univ Johannesburg, Dept Math, Johannesburg, South Africa
[4] Univ Bari Aldo Moro, Bari, Italy
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Bulk-surface PDEs; Bulk-surface finite elements; Bulk-surface virtual elements; Bulk-surface reaction-diffusion systems; Virtual elements;
D O I
10.1007/s00211-020-01167-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method (Beirao Da Veiga et al. in Math Models Methods Appl Sci 23(01):199-214, 2013. https:// doi.org/10.1051/ m2an/ 2013138) in the bulk domain to a surface finite element method (Dziuk and Elliott in Acta Numer 22:289-396, 2013. https://doi.org/ 10.1017/s0962492913000056) on the surface. The proposed method, which we coin the bulk-surface virtual element method includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes (Madzvamuse and Chung in Finite Elem Anal Des 108:9-21, 2016. https://doi.org/ 10.1016/j.finel.2015.09.002). The method exhibits second-order convergence in space, provided the exact solution is Hg2+1/4 in the bulk and H-2 on the surface, where the additional 1/4 is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an L-2-preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator (Elliott and Ranner in IMA JNumAnal 33(2):377-402, 2013. https://doi.org/10.1093/ imanum/ drs022) for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes (Madzvamuse and Chung 2016). Three numerical examples illustrate our findings.
引用
收藏
页码:305 / 348
页数:44
相关论文
共 50 条
  • [1] Bulk-surface virtual element method for systems of PDEs in two-space dimensions
    Massimo Frittelli
    Anotida Madzvamuse
    Ivonne Sgura
    Numerische Mathematik, 2021, 147 : 305 - 348
  • [2] Virtual element method for elliptic bulk-surface PDEs in three space dimensions
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4221 - 4247
  • [3] A bulk-surface mechanobiochemical modelling approach for single cell migration in two-space dimensions
    Hernandez-Aristizabal, David
    Garzon-Alvarado, Diego-Alexander
    Duque-Daza, Carlos-Alberto
    Madzvamuse, Anotida
    JOURNAL OF THEORETICAL BIOLOGY, 2024, 595
  • [4] The Bulk-Surface Virtual Element Method for Reaction-Diffusion PDEs: Analysis and Applications
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 33 (03) : 733 - 763
  • [5] The bulk-surface finite element method for reaction-diffusion systems on stationary volumes
    Madzyamuse, Anotida
    Chung, Andy H. W.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 108 : 9 - 21
  • [6] The lifespan of solutions to quasilinear hyperbolic systems in two-space dimensions
    Hoshiga, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (04) : 543 - 560
  • [7] An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
    Engwer, Christian
    Westerheide, Sebastian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (03) : 569 - 591
  • [8] VEMcomp: a Virtual Elements MATLAB package for bulk-surface PDEs in 2D and 3D
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERICAL ALGORITHMS, 2024,
  • [9] A hybrid finite volume - finite element method for bulk-surface coupled problems
    Chernyshenko, Alexey Y.
    Olshanskii, Maxim A.
    Vassilevski, Yuri V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 352 : 516 - 533
  • [10] A MULTISCALE METHOD FOR HETEROGENEOUS BULK-SURFACE COUPLING
    Altmann, Robert
    Verfuerth, Barbara
    MULTISCALE MODELING & SIMULATION, 2021, 19 (01): : 374 - 400