The Bulk-Surface Virtual Element Method for Reaction-Diffusion PDEs: Analysis and Applications

被引:11
|
作者
Frittelli, Massimo [1 ]
Madzvamuse, Anotida [2 ,3 ,4 ]
Sgura, Ivonne [1 ]
机构
[1] Univ Salento, Dept Math & Phys E Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, England
[4] Univ Pretoria, Dept Math & Appl Math, Private Bag x 20, ZA-0028 Hatfield, South Africa
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
  Bulk-surface PDEs; bulk-surface reaction-diffusion systems; polyhedral meshes; bulk-; surface virtual element method; convergence; MODEL; SYSTEMS;
D O I
10.4208/cicp.OA-2022-0204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.
引用
收藏
页码:733 / 763
页数:31
相关论文
共 50 条
  • [41] Global Output Feedback Stabilization of Semilinear Reaction-Diffusion PDEs
    Lhachemi, Hugo
    Prieur, Christophe
    IFAC PAPERSONLINE, 2022, 55 (26): : 53 - 58
  • [42] Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs
    Aminzare, Zahra
    Sontag, Eduardo D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 125 - 144
  • [43] Exact Solutions of Reaction-Diffusion PDEs with Anisotropic Time Delay
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    MATHEMATICS, 2023, 11 (14)
  • [44] EVENT-TRIGGERED GAIN SCHEDULING OF REACTION-DIFFUSION PDEs
    Karafyllis, Iasson
    Espitia, Nicolas
    Krstic, Miroslav
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2047 - 2067
  • [45] Finite element analysis of convection dominated reaction-diffusion problems
    Galeao, AC
    Almeida, RC
    Malta, SMC
    Loula, AE
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 205 - 222
  • [46] ON A COMPARISON METHOD TO REACTION-DIFFUSION SYSTEMS AND ITS APPLICATIONS TO CHEMOTAXIS
    Negreanu, Mihaela
    Ignacio Tello, J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2669 - 2688
  • [47] Galerkin finite element method for the generalized delay reaction-diffusion equation
    Lubo, Gemeda Tolessa
    Duressa, Gemechis File
    RESEARCH IN MATHEMATICS, 2022, 9 (01):
  • [48] A BALANCED FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Lin, Runchang
    Stynes, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2729 - 2743
  • [49] A DUAL FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM
    Cai, Zhiqiang
    Ku, Jaeun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1654 - 1673
  • [50] The homotopy analysis method for Cauchy reaction-diffusion problems
    Bataineh, A. Sami
    Noorani, M. S. M.
    Hashim, I.
    PHYSICS LETTERS A, 2008, 372 (05) : 613 - 618