The Bulk-Surface Virtual Element Method for Reaction-Diffusion PDEs: Analysis and Applications

被引:11
|
作者
Frittelli, Massimo [1 ]
Madzvamuse, Anotida [2 ,3 ,4 ]
Sgura, Ivonne [1 ]
机构
[1] Univ Salento, Dept Math & Phys E Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, England
[4] Univ Pretoria, Dept Math & Appl Math, Private Bag x 20, ZA-0028 Hatfield, South Africa
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
  Bulk-surface PDEs; bulk-surface reaction-diffusion systems; polyhedral meshes; bulk-; surface virtual element method; convergence; MODEL; SYSTEMS;
D O I
10.4208/cicp.OA-2022-0204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.
引用
收藏
页码:733 / 763
页数:31
相关论文
共 50 条
  • [21] An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
    Engwer, Christian
    Westerheide, Sebastian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (03) : 569 - 591
  • [22] VEMcomp: a Virtual Elements MATLAB package for bulk-surface PDEs in 2D and 3D
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERICAL ALGORITHMS, 2024,
  • [23] A hybrid finite volume - finite element method for bulk-surface coupled problems
    Chernyshenko, Alexey Y.
    Olshanskii, Maxim A.
    Vassilevski, Yuri V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 352 : 516 - 533
  • [24] Matrix-oriented discretization methods for reaction-diffusion PDEs: Comparisons and applications
    D'Autilia, Maria Chiara
    Sgura, Ivonne
    Simoncini, Valeria
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 2067 - 2085
  • [25] A MULTISCALE METHOD FOR HETEROGENEOUS BULK-SURFACE COUPLING
    Altmann, Robert
    Verfuerth, Barbara
    MULTISCALE MODELING & SIMULATION, 2021, 19 (01): : 374 - 400
  • [26] Separation of variables in PDEs using nonlinear transformations: Applications to reaction-diffusion type equations
    Polyanin, Andrei D.
    Zhurov, Alexei, I
    APPLIED MATHEMATICS LETTERS, 2020, 100 (100)
  • [27] COUPLING PARTICLE-BASED REACTION-DIFFUSION SIMULATIONS WITH RESERVOIRS MEDIATED BY REACTION-DIFFUSION PDEs\ast
    Kostre, Margarita
    Schuette, Christof
    Noe, Frank
    Del Razos, Mauricio J.
    MULTISCALE MODELING & SIMULATION, 2021, 19 (04): : 1659 - 1683
  • [28] Cut finite element methods for coupled bulk-surface problems
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Zahedi, Sara
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 203 - 231
  • [29] Splitting spectral element method for fractional reaction-diffusion equations
    Li, Qi
    Song, Fangying
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14
  • [30] A Finite Element Method for Singularly Perturbed Reaction-diffusion Problems
    Huo-yuan Duan
    Da-Li Zhang
    Acta Mathematicae Applicatae Sinica, 2003, 19 (1) : 25 - 30