The Bulk-Surface Virtual Element Method for Reaction-Diffusion PDEs: Analysis and Applications

被引:11
|
作者
Frittelli, Massimo [1 ]
Madzvamuse, Anotida [2 ,3 ,4 ]
Sgura, Ivonne [1 ]
机构
[1] Univ Salento, Dept Math & Phys E Giorgi, Via Arnesano, I-73100 Lecce, Italy
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, England
[4] Univ Pretoria, Dept Math & Appl Math, Private Bag x 20, ZA-0028 Hatfield, South Africa
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
  Bulk-surface PDEs; bulk-surface reaction-diffusion systems; polyhedral meshes; bulk-; surface virtual element method; convergence; MODEL; SYSTEMS;
D O I
10.4208/cicp.OA-2022-0204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bulk-surface partial differential equations (BS-PDEs) are prevalent in many applications such as cellular, developmental and plant biology as well as in engineering and material sciences. Novel numerical methods for BS-PDEs in three space dimensions (3D) are sparse. In this work, we present a bulk-surface virtual element method (BS-VEM) for bulk-surface reaction-diffusion systems, a form of semilinear parabolic BS-PDEs in 3D. Unlike previous studies in two space dimensions (2D), the 3D bulk is approximated with general polyhedra, whose outer faces constitute a flat polygonal approximation of the surface. For this reason, the method is restricted to the lowest order case where the geometric error is not dominant. The BS-VEM guarantees all the advantages of polyhedral methods such as easy mesh generation and fast matrix assembly on general geometries. Such advantages are much more relevant than in 2D. Despite allowing for general polyhedra, general nonlinear reaction kinetics and general surface curvature, the method only relies on nodal values without needing additional evaluations usually associated with the quadrature of general reaction kinetics. This latter is particularly costly in 3D. The BS-VEM as implemented in this study retains optimal convergence of second order in space.
引用
收藏
页码:733 / 763
页数:31
相关论文
共 50 条
  • [11] Well-posedness and fast-diffusion limit for a bulk-surface reaction-diffusion system
    Hausberg, Stephan
    Roeger, Matthias
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (03):
  • [12] Turing patterns in a 3D morpho-chemical bulk-surface reaction-diffusion system for battery modeling
    Frittelli, Massimo
    Sgura, Ivonne
    Bozzini, Benedetto
    MATHEMATICS IN ENGINEERING, 2024, 6 (02): : 363 - 393
  • [13] Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    Dreyer, Wolfgang
    Guhlke, Clemens
    Mueller, Ruediger
    ENTROPY, 2018, 20 (12):
  • [14] Analysis of bulk-surface reaction-sorption-diffusion systems with Langmuir-type adsorption
    Augner, Bjorn
    Bothe, Dieter
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 188 : 215 - 272
  • [15] Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE
    Lhachemi, Hugo
    Prieur, Christophe
    AUTOMATICA, 2022, 144
  • [16] Stability Analysis of a Bulk-Surface Reaction Model for Membrane Protein Clustering
    Stolerman, Lucas M.
    Getz, Michael
    Smith, Stefan G. Llewellyn
    Holst, Michael
    Rangamani, Padmini
    BULLETIN OF MATHEMATICAL BIOLOGY, 2020, 82 (02)
  • [17] Galilean Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    Mueller, Ruediger
    Landstorfer, Manuel
    ENTROPY, 2023, 25 (03)
  • [18] Finite element analysis for a coupled bulk-surface partial differential equation
    Elliott, Charles M.
    Ranner, Thomas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 377 - 402
  • [19] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Sutthisak Phongthanapanich
    Pramote Dechaumphai
    Acta Mechanica Sinica, 2009, 25 (04) : 481 - 489
  • [20] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    ACTA MECHANICA SINICA, 2009, 25 (04) : 481 - 489