Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer

被引:1
|
作者
Zhang, Hong [1 ]
Wang, Hongyan [1 ]
Zhang, Xijun [1 ]
Gong, Lei [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
data and data science; artificial intelligence and advanced computing applications; neural networks; information systems and technology; intelligent transportation systems; NEURAL-NETWORK;
D O I
10.1177/03611981231205880
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [21] STPSformer: Spatial-Temporal ProbSparse Transformer for Long-Term Traffic Flow Forecasting
    Wang, Zhanquan (zhqwang@ecust.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [22] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [23] Learning Dynamic Spatial-Temporal Dependence in Traffic Forecasting
    Ren, Chaoyu
    Li, Yuezhu
    IEEE ACCESS, 2024, 12 : 190039 - 190053
  • [24] Spatial-Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting
    Zhou, Junwei
    Qin, Xizhong
    Ding, Yuanfeng
    Ma, Haodong
    MATHEMATICS, 2023, 11 (13)
  • [25] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [26] Dynamic Spatial-Temporal Perception Graph Convolutional Networks for Traffic Flow Forecasting
    Cao, Jingsi
    Liu, Weibin
    Xing, Weiwei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 347 - 360
  • [27] Beyond homophily in spatial-temporal traffic flow forecasting
    Chen, Yuxin
    Huo, Jingyi
    Lin, Fangru
    Yan, Hui
    NEURAL NETWORKS, 2025, 183
  • [28] Spatial-Temporal PDE Networks for Traffic Flow Forecasting
    Bao, Tianshu
    Wei, Hua
    Ji, Junyi
    Work, Daniel
    Johnson, Taylor Thomas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT X, ECML PKDD 2024, 2024, 14950 : 166 - 182
  • [29] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [30] Transformer Based Spatial-Temporal Fusion Network for Metro Passenger Flow Forecasting
    Zhang, Weiqi
    Zhang, Chen
    Tsung, Fugee
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 1515 - 1520