Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer

被引:1
|
作者
Zhang, Hong [1 ]
Wang, Hongyan [1 ]
Zhang, Xijun [1 ]
Gong, Lei [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
data and data science; artificial intelligence and advanced computing applications; neural networks; information systems and technology; intelligent transportation systems; NEURAL-NETWORK;
D O I
10.1177/03611981231205880
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [31] Generalized spatial-temporal regression graph convolutional transformer for traffic forecasting
    Xiong, Lang
    Su, Liyun
    Zeng, Shiyi
    Li, Xiangjing
    Wang, Tong
    Zhao, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7943 - 7964
  • [32] A Hybrid Transformer-based Spatial-Temporal Network for Traffic Flow Prediction
    Tian, Guanqun
    Li, Dequan
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [33] Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
    Zhang, Hong
    Gong, Lei
    Zhao, Tianxin
    Zhang, Xijun
    Wang, Hongyan
    High Technology Letters, 2024, 30 (04) : 370 - 379
  • [34] Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
    张红
    GONG Lei
    ZHAO Tianxin
    ZHANG Xijun
    WANG Hongyan
    High Technology Letters, 2024, 30 (04) : 370 - 379
  • [35] DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting
    Lan, Shiyong
    Ma, Yitong
    Huang, Weikang
    Wang, Wenwu
    Yang, Hongyu
    Li, Piaoyang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] A traffic flow forecasting method based on hybrid spatial-temporal gated convolution
    Zhang, Ying
    Yang, Songhao
    Wang, Hongchao
    Cheng, Yongqiang
    Wang, Jinyu
    Cao, Liping
    An, Ziying
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 1805 - 1817
  • [37] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [38] URBAN TRAFFIC FLOW FORECASTING BASED ON SPATIAL-TEMPORAL GRAPH CONTRASTIVE LEARNING
    Pan, Lin
    Ren, Qianqian
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5560 - 5564
  • [39] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [40] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373