Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer

被引:1
|
作者
Zhang, Hong [1 ]
Wang, Hongyan [1 ]
Zhang, Xijun [1 ]
Gong, Lei [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
data and data science; artificial intelligence and advanced computing applications; neural networks; information systems and technology; intelligent transportation systems; NEURAL-NETWORK;
D O I
10.1177/03611981231205880
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic flow forecasting is crucial for urban traffic control and route planning. Aiming at the difficulty in capturing dynamic spatio-temporal complexity of traffic flow, a dynamic spatio-temporal transformer (DST-Trans) model capable of modeling dynamic correlation of traffic flow is proposed, which consists of gated temporal convolutional network (GTCN), graph convolutional network (GCN), and spatio-temporal transformer (ST-TF). GTCN and GCN are utilized to capture the temporal and spatial characteristics of traffic flow, respectively. ST-TF includes a temporal transformer using temporal gated convolution and temporal multi-head self-attention to capture short-long term temporal features, and spatial transformer using spatial gated graph convolution and spatial multi-head self-attention to capture local-global dynamic spatial features. In addition, to take full advantage of the dynamic and static associations of road networks, multi-graph models of road relationship graph, similarity graph, and adaptive dynamic graph with SGGC are constructed. Experimental results show that the DST-Trans model in this paper shows good prediction performance in short-term (15 min), medium-term (30 min), and long-term (60 min) prediction, outperforming existing state-of-the-art models by up to approximately 7%.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [41] Spatial-temporal dependence and similarity aware traffic flow forecasting
    Liu, Mingzhi
    Liu, Guanfeng
    Sun, Lijun
    INFORMATION SCIENCES, 2023, 625 : 81 - 96
  • [42] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, : 364 - 373
  • [43] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [44] Spatial-Temporal Transformer Networks for Traffic Flow Forecasting Using a Pre-Trained Language Model
    Ma, Ju
    Zhao, Juan
    Hou, Yao
    SENSORS, 2024, 24 (17)
  • [45] DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction
    Dong, Hui
    Pan, Xiao
    Chen, Xiao
    Sun, Jing
    Wang, Shuhai
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 228 - 241
  • [46] Dynamic spatial-temporal network for traffic forecasting based on joint latent space representation
    Yu, Qian
    Ma, Liang
    Lai, Pei
    Guo, Jin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1369 - 1384
  • [47] ASTTN: An Adaptive Spatial-Temporal Transformer Network for traffic flow prediction
    Xue, Zijie
    Huang, Linyu
    Ning, Qian
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [48] STFEformer: Spatial-Temporal Fusion Embedding Transformer for Traffic Flow Prediction
    Yang, Hanqing
    Wei, Sen
    Wang, Yuanqing
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [49] Traffic flow forecasting based on lightweight spatial-temporal graph convolution networks model
    He, Wenwu
    Pei, Boyu
    Mao, Guojun
    Chen, Weiya
    Journal of Railway Science and Engineering, 2022, 19 (09): : 2552 - 2562
  • [50] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746