Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting

被引:3
|
作者
Wu, Di [1 ,2 ]
Peng, Kai [1 ,2 ]
Wang, Shangguang [3 ]
Leung, Victor C. M. [4 ,5 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362021, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[5] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 08期
基金
美国国家科学基金会;
关键词
Graph attention networks (GATs); spatial-temporal dependencies; traffic flow forecasting; transformer; NEURAL-NETWORKS;
D O I
10.1109/JIOT.2023.3340182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the significant increase in the number of motor vehicles, road-related issues, such as traffic congestion and accidents, have also escalated. The development of an accurate and efficient traffic flow forecasting model is essential for helping car owners plan their journeys. Despite advancements in forecasting models, there are three remaining issues: 1) failing to effectively use cyclical data; 2) failing to adequately capture spatial dependencies; and 3) high-time complexity and memory usage. To tackle the aforementioned challenges, we present a novel spatial-temporal graph attention gated recurrent transformer network (STGAGRTN) for traffic flow forecasting. Specifically, the use of a spatial transformer module allows for the extraction of dynamic spatial dependencies among individual nodes, going beyond the limitation of only considering neighboring nodes. Subsequently, we propose a temporal transformer to extract periodic information from traffic data and capture long-term dependencies. Additionally, we utilize two additional classical techniques to complement the aforementioned modules for extracting characteristics. By incorporating comprehensive spatial-temporal characteristics into our model, we can accurately predict multiple nodes simultaneously. Finally, we have successfully optimized the computational complexity of the transformer module from O (n(2)) to O(n log n). Our model has undergone extensive testing on four authentic data sets, providing compelling evidence of its superior predictive capabilities.
引用
收藏
页码:14267 / 14281
页数:15
相关论文
共 50 条
  • [1] STGAFormer: Spatial-temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting
    Geng, Zili
    Xu, Jie
    Wu, Rongsen
    Zhao, Changming
    Wang, Jin
    Li, Yunji
    Zhang, Chenlin
    INFORMATION FUSION, 2024, 105
  • [2] A spatial-temporal graph gated transformer for traffic forecasting
    Bouchemoukha, Haroun
    Zennir, Mohamed Nadjib
    Alioua, Ahmed
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):
  • [3] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839
  • [4] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [5] STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
    Liu, Jiansong
    Kang, Yan
    Li, Hao
    Wang, Haining
    Yang, Xuekun
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12472 - 12488
  • [6] STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
    Jiansong Liu
    Yan Kang
    Hao Li
    Haining Wang
    Xuekun Yang
    Applied Intelligence, 2023, 53 : 12472 - 12488
  • [7] Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Wang, Liang
    Zhuang, Zhongfang
    Wang, Junpeng
    Dai, Xin
    Zheng, Yan
    Zhang, Wei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 210 - 225
  • [8] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [9] Graph enhanced spatial-temporal transformer for traffic flow forecasting
    Kong, Weishan
    Ju, Yanni
    Zhang, Shiyuan
    Wang, Jun
    Huang, Liwei
    Qu, Hong
    APPLIED SOFT COMPUTING, 2025, 170
  • [10] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80