Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space

被引:0
|
作者
Ghosh, Mrityunjoy [1 ]
Verma, Sheela [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, India
关键词
p-Laplacian; h-convexity; Steiner formula; Nagy's inequality; Reverse Faber-Krahn inequality; Interior parallels; ISOPERIMETRIC-INEQUALITIES; BODIES; ROBIN;
D O I
10.1016/j.jmaa.2023.127419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the shape optimization problem for the first eigenvalue of the p-Laplace operator with the mixed Neumann-Dirichlet boundary conditions on multiply-connected domains in hyperbolic space. Precisely, we establish that among all multiply-connected domains of a given volume and prescribed (n - 1)-th quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric annular region produces the largest first eigenvalue. We also derive Nagy's type inequality for outer parallel sets of a convex domain in the hyperbolic space. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ON THE FABER-KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    Toledo, Francisco
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (01) : 60 - 72
  • [2] A reverse Faber-Krahn inequality for the magnetic Laplacian ☆
    Colbois, Bruno
    Lena, Corentin
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 192
  • [3] Faber-Krahn inequality for robin problems involving p-Laplacian
    Dai, Qiu-yi
    Fu, Yu-xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 13 - 28
  • [4] Faber-Krahn inequality for robin problems involving p-Laplacian
    Qiu-yi Dai
    Yu-xia Fu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 13 - 28
  • [5] A Proof of the Faber-Krahn Inequality for the First Eigenvalue of the p-Laplacian
    Bhattacharya, Tilak
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1999, 177 (01) : 225 - 240
  • [6] REVERSE FABER-KRAHN INEQUALITY FOR A TRUNCATED LAPLACIAN OPERATOR
    Parini, Enea
    Rossi, Julio D.
    Salort, Ariel
    PUBLICACIONS MATEMATIQUES, 2022, 66 (02) : 441 - 455
  • [7] ON A CONJECTURED REVERSE FABER-KRAHN INEQUALITY FOR A STEKLOV TYPE LAPLACIAN EIGENVALUE
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 63 - 82
  • [8] THE FABER-KRAHN INEQUALITY FOR THE FIRST EIGENVALUE OF THE FRACTIONAL DIRICHLET p-LAPLACIAN FOR TRIANGLES AND QUADRILATERALS
    Olivares Contador, Franco
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 425 - 434
  • [9] The quantitative Faber-Krahn inequality for the Robin Laplacian
    Bucur, Dorin
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4488 - 4503
  • [10] A note on the failure of the Faber-Krahn inequality for the vector Laplacian
    Krejcirik, David
    Lamberti, Pier Domenico
    Zaccaron, Michele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31