Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space

被引:0
|
作者
Ghosh, Mrityunjoy [1 ]
Verma, Sheela [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, India
关键词
p-Laplacian; h-convexity; Steiner formula; Nagy's inequality; Reverse Faber-Krahn inequality; Interior parallels; ISOPERIMETRIC-INEQUALITIES; BODIES; ROBIN;
D O I
10.1016/j.jmaa.2023.127419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the shape optimization problem for the first eigenvalue of the p-Laplace operator with the mixed Neumann-Dirichlet boundary conditions on multiply-connected domains in hyperbolic space. Precisely, we establish that among all multiply-connected domains of a given volume and prescribed (n - 1)-th quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric annular region produces the largest first eigenvalue. We also derive Nagy's type inequality for outer parallel sets of a convex domain in the hyperbolic space. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Capacity and inequality of Faber-Krahn in Rn
    Bertrand, J
    Colbois, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (01) : 1 - 28
  • [22] A Faber-Krahn inequality for Robin problems in any space dimension
    Daners, D
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 767 - 785
  • [23] A Faber-Krahn inequality for Robin problems in any space dimension
    Daniel Daners
    Mathematische Annalen, 2006, 335 : 767 - 785
  • [24] A free boundary approach to the Faber-Krahn inequality
    Bucur, Dorin
    Freitas, Pedro
    GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 73 - 86
  • [25] The ∞-capacity and Faber-Krahn inequality on Grushin spaces
    Li, Guoliang
    Liu, Yu
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 135 - 162
  • [26] REVERSE FABER-KRAHN INEQUALITIES FOR ZAREMBA PROBLEMS
    Anoop, Thazhe veetil
    Ghosh, Mrityunjoy
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (01) : 257 - 278
  • [27] Uniqueness in the Faber-Krahn inequality for Robin problems
    Daners, Daniel
    Kennedy, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1191 - 1207
  • [28] Is the Faber-Krahn inequality true for the Stokes operator?
    Henrot, Antoine
    Mazari-Fouquer, Idriss
    Privat, Yannick
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [29] Faber-Krahn type inequality for unicyclic graphs
    Zhang, Guang-Jun
    Zhang, Jie
    Zhang, Xiao-Dong
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12): : 1355 - 1364
  • [30] A local Faber-Krahn inequality and applications to Schrodinger equations
    Lierl, Janna
    Steinerberger, Stefan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) : 66 - 81