Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space

被引:0
|
作者
Ghosh, Mrityunjoy [1 ]
Verma, Sheela [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, India
关键词
p-Laplacian; h-convexity; Steiner formula; Nagy's inequality; Reverse Faber-Krahn inequality; Interior parallels; ISOPERIMETRIC-INEQUALITIES; BODIES; ROBIN;
D O I
10.1016/j.jmaa.2023.127419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the shape optimization problem for the first eigenvalue of the p-Laplace operator with the mixed Neumann-Dirichlet boundary conditions on multiply-connected domains in hyperbolic space. Precisely, we establish that among all multiply-connected domains of a given volume and prescribed (n - 1)-th quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric annular region produces the largest first eigenvalue. We also derive Nagy's type inequality for outer parallel sets of a convex domain in the hyperbolic space. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Faber-Krahn inequality for solutions of Schrodinger's equation
    De Carli, L.
    Hudson, S. M.
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2416 - 2427
  • [32] A Faber-Krahn Inequality for the Cheeger Constant of N -gons
    Bucur, Dorin
    Fragala, Ilaria
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 88 - 117
  • [33] An alternative approach to the Faber-Krahn inequality for Robin problems
    Bucur, Dorin
    Daners, Daniel
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) : 75 - 86
  • [34] A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter
    Cito, Simone
    La Manna, Domenico Angelo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [35] A Faber-Krahn inequality for mixed local and nonlocal operators
    Stefano Biagi
    Serena Dipierro
    Enrico Valdinoci
    Eugenio Vecchi
    Journal d'Analyse Mathématique, 2023, 150 : 405 - 448
  • [36] A quantitative stability estimate for the fractional Faber-Krahn inequality
    Brasco, Lorenzo
    Cinti, Eleonora
    Vita, Stefano
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (03)
  • [37] The Faber-Krahn inequality for random/nonautonomous parabolic equations
    Mierczynski, J
    Shen, WX
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) : 101 - 114
  • [38] Stability of the Faber-Krahn inequality in positive Ricci curvature
    Bertrand, J
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (02) : 353 - +
  • [39] A Faber-Krahn inequality for mixed local and nonlocal operators
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (02): : 405 - 448
  • [40] Reverse Faber-Krahn and Mahler inequalities for the Cheeger constant
    Bucur, Dorin
    Fragala, Ilaria
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (05) : 913 - 937