Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space

被引:0
|
作者
Ghosh, Mrityunjoy [1 ]
Verma, Sheela [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi, India
关键词
p-Laplacian; h-convexity; Steiner formula; Nagy's inequality; Reverse Faber-Krahn inequality; Interior parallels; ISOPERIMETRIC-INEQUALITIES; BODIES; ROBIN;
D O I
10.1016/j.jmaa.2023.127419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the shape optimization problem for the first eigenvalue of the p-Laplace operator with the mixed Neumann-Dirichlet boundary conditions on multiply-connected domains in hyperbolic space. Precisely, we establish that among all multiply-connected domains of a given volume and prescribed (n - 1)-th quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric annular region produces the largest first eigenvalue. We also derive Nagy's type inequality for outer parallel sets of a convex domain in the hyperbolic space. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条