REVERSE FABER-KRAHN INEQUALITY FOR A TRUNCATED LAPLACIAN OPERATOR

被引:1
|
作者
Parini, Enea [1 ]
Rossi, Julio D. [2 ,3 ]
Salort, Ariel [2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,39 Rue Freder Joliot Curie, F-13453 Marseille 13, France
[2] Univ Buenos Aires, IMAS Conicet, Ciudad Univ,Pab 1 1428, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Dept Matemat, FCEyN, Ciudad Univ,Pab 1 1428, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
truncated Laplacian; reverse Faber-Krahn inequality; spectral optimization; EIGENVALUE;
D O I
10.5565/PUBLMAT6622201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a reverse Fab er-Krahn inequality for the principal eigenvalue mu 1(S2) of the fully nonlinear eigenvalue problem (-lambda(N) (D(2)u) = mu u in Omega, u = 0 on partial derivative Omega. Here lambda(N)(D(2)u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain Omega(2) subset of R-N, the inequality mu(1)(S2) <= pi 2/[diam(S Omega)](2) = mu(1)(B-diam(Omega)/2), where diam(Omega) is the diameter of Omega, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of mu(1)(Omega) under different kinds of con-straints.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 50 条
  • [1] A reverse Faber-Krahn inequality for the magnetic Laplacian ☆
    Colbois, Bruno
    Lena, Corentin
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 192
  • [2] Towards a reversed Faber-Krahn inequality for the truncated Laplacian
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 723 - 740
  • [3] ON A CONJECTURED REVERSE FABER-KRAHN INEQUALITY FOR A STEKLOV TYPE LAPLACIAN EIGENVALUE
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 63 - 82
  • [4] Reverse Faber-Krahn inequality for the p-Laplacian in hyperbolic space
    Ghosh, Mrityunjoy
    Verma, Sheela
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [5] The quantitative Faber-Krahn inequality for the Robin Laplacian
    Bucur, Dorin
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4488 - 4503
  • [6] ON THE FABER-KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    Toledo, Francisco
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (01) : 60 - 72
  • [7] Is the Faber-Krahn inequality true for the Stokes operator?
    Henrot, Antoine
    Mazari-Fouquer, Idriss
    Privat, Yannick
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [8] A note on the failure of the Faber-Krahn inequality for the vector Laplacian
    Krejcirik, David
    Lamberti, Pier Domenico
    Zaccaron, Michele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
  • [9] A Faber-Krahn inequality for the Laplacian with generalised Wentzell boundary conditions
    Kennedy, James
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (03) : 557 - 582
  • [10] On reverse Faber-Krahn inequalities
    Anoop, T. V.
    Kumar, K. Ashok
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)