Towards a reversed Faber-Krahn inequality for the truncated Laplacian

被引:9
|
作者
Birindelli, Isabeau [1 ]
Galise, Giulio [1 ]
Ishii, Hitoshi [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat G Castelnuovo, Ple Aldo Moro 2, I-00185 Rome, Italy
[2] Tsuda Univ, Inst Math & Comp Sci, 2-1-1 Tsuda Machi, Kodaira, Tokyo 1878577, Japan
关键词
Degenerate elliptic operators; Dirichlet problems; principal eigenvalue; qualitative properties; PRINCIPAL EIGENVALUE; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE;
D O I
10.4171/RMI/1146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P-1(+) mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type domains having fixed volume, the symmetry of the domain maximizes the principal eigenvalue, contrary to what happens for the Laplacian.
引用
收藏
页码:723 / 740
页数:18
相关论文
共 50 条
  • [1] REVERSE FABER-KRAHN INEQUALITY FOR A TRUNCATED LAPLACIAN OPERATOR
    Parini, Enea
    Rossi, Julio D.
    Salort, Ariel
    PUBLICACIONS MATEMATIQUES, 2022, 66 (02) : 441 - 455
  • [2] The quantitative Faber-Krahn inequality for the Robin Laplacian
    Bucur, Dorin
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4488 - 4503
  • [3] A reverse Faber-Krahn inequality for the magnetic Laplacian ☆
    Colbois, Bruno
    Lena, Corentin
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 192
  • [4] ON THE FABER-KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    Toledo, Francisco
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (01) : 60 - 72
  • [5] A note on the failure of the Faber-Krahn inequality for the vector Laplacian
    Krejcirik, David
    Lamberti, Pier Domenico
    Zaccaron, Michele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
  • [6] A Faber-Krahn inequality for the Laplacian with generalised Wentzell boundary conditions
    Kennedy, James
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (03) : 557 - 582
  • [7] ON THE POLYGONAL FABER-KRAHN INEQUALITY
    Bogosel, Beniamin
    Bucur, Dorin
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11 : 19 - 105
  • [8] A GENERALIZATION OF THE FABER-KRAHN INEQUALITY
    BERARD, P
    MEYER, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (08): : 437 - 439
  • [9] A Faber-Krahn inequality for the Laplacian with Generalised Wentzell boundary conditions
    James Kennedy
    Journal of Evolution Equations, 2008, 8 : 557 - 582
  • [10] A proof of the Faber-Krahn inequality for the first eigenvalue of thep-Laplacian
    Tilak Bhattacharya
    Annali di Matematica Pura ed Applicata, 1999, 177 : 225 - 240