Towards a reversed Faber-Krahn inequality for the truncated Laplacian

被引:9
|
作者
Birindelli, Isabeau [1 ]
Galise, Giulio [1 ]
Ishii, Hitoshi [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat G Castelnuovo, Ple Aldo Moro 2, I-00185 Rome, Italy
[2] Tsuda Univ, Inst Math & Comp Sci, 2-1-1 Tsuda Machi, Kodaira, Tokyo 1878577, Japan
关键词
Degenerate elliptic operators; Dirichlet problems; principal eigenvalue; qualitative properties; PRINCIPAL EIGENVALUE; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE;
D O I
10.4171/RMI/1146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P-1(+) mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type domains having fixed volume, the symmetry of the domain maximizes the principal eigenvalue, contrary to what happens for the Laplacian.
引用
收藏
页码:723 / 740
页数:18
相关论文
共 50 条
  • [21] The ∞-capacity and Faber-Krahn inequality on Grushin spaces
    Li, Guoliang
    Liu, Yu
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 135 - 162
  • [22] Uniqueness in the Faber-Krahn inequality for Robin problems
    Daners, Daniel
    Kennedy, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1191 - 1207
  • [23] Is the Faber-Krahn inequality true for the Stokes operator?
    Henrot, Antoine
    Mazari-Fouquer, Idriss
    Privat, Yannick
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [24] Faber-Krahn type inequality for unicyclic graphs
    Zhang, Guang-Jun
    Zhang, Jie
    Zhang, Xiao-Dong
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12): : 1355 - 1364
  • [25] A local Faber-Krahn inequality and applications to Schrodinger equations
    Lierl, Janna
    Steinerberger, Stefan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) : 66 - 81
  • [26] A Faber-Krahn inequality for solutions of Schrodinger's equation
    De Carli, L.
    Hudson, S. M.
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 2416 - 2427
  • [27] A Faber-Krahn Inequality for the Cheeger Constant of N -gons
    Bucur, Dorin
    Fragala, Ilaria
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 88 - 117
  • [28] An alternative approach to the Faber-Krahn inequality for Robin problems
    Bucur, Dorin
    Daners, Daniel
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) : 75 - 86
  • [29] A Faber-Krahn inequality for mixed local and nonlocal operators
    Stefano Biagi
    Serena Dipierro
    Enrico Valdinoci
    Eugenio Vecchi
    Journal d'Analyse Mathématique, 2023, 150 : 405 - 448
  • [30] A quantitative stability estimate for the fractional Faber-Krahn inequality
    Brasco, Lorenzo
    Cinti, Eleonora
    Vita, Stefano
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (03)