ON THE POLYGONAL FABER-KRAHN INEQUALITY

被引:4
|
作者
Bogosel, Beniamin [1 ]
Bucur, Dorin [2 ]
机构
[1] Inst Polytech Paris, Ecole Polytech, CNRS, CMAP, F-91120 Palaiseau, France
[2] Univ Savoie Mt Blanc, Lab Math, CNRS, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
关键词
Faber-Krahn inequality; polygons; shape optimization; numerical approximations; FINITE-ELEMENT; SHAPE OPTIMIZATION; EIGENVALUES; STABILITY; LAPLACIAN; SOBOLEV; DOMAINS; EIGENFUNCTIONS; BOUNDS; 1ST;
D O I
10.5802/jep.250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been conjectured by Polya and Szeg6 seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
引用
收藏
页码:19 / 105
页数:88
相关论文
共 50 条
  • [1] A GENERALIZATION OF THE FABER-KRAHN INEQUALITY
    BERARD, P
    MEYER, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (08): : 437 - 439
  • [2] Stability of the Gaussian Faber-Krahn inequality
    Carbotti, Alessandro
    Cito, Simone
    La Manna, Domenico Angelo
    Pallara, Diego
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2185 - 2198
  • [3] A Faber-Krahn inequality for Wavelet transforms
    Ramos, Joao P. G.
    Tilli, Paolo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 2018 - 2034
  • [4] A quantitative form of Faber-Krahn inequality
    Fusco, Nicola
    Zhang, Yi Ru-Ya
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
  • [5] Capacity and inequality of Faber-Krahn in Rn
    Bertrand, J
    Colbois, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (01) : 1 - 28
  • [6] The quantitative Faber-Krahn inequality for the Robin Laplacian
    Bucur, Dorin
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4488 - 4503
  • [7] A free boundary approach to the Faber-Krahn inequality
    Bucur, Dorin
    Freitas, Pedro
    GEOMETRIC AND COMPUTATIONAL SPECTRAL THEORY, 2017, 700 : 73 - 86
  • [8] A reverse Faber-Krahn inequality for the magnetic Laplacian ☆
    Colbois, Bruno
    Lena, Corentin
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 192
  • [9] The ∞-capacity and Faber-Krahn inequality on Grushin spaces
    Li, Guoliang
    Liu, Yu
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 135 - 162
  • [10] Uniqueness in the Faber-Krahn inequality for Robin problems
    Daners, Daniel
    Kennedy, James
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1191 - 1207