ON THE POLYGONAL FABER-KRAHN INEQUALITY

被引:4
|
作者
Bogosel, Beniamin [1 ]
Bucur, Dorin [2 ]
机构
[1] Inst Polytech Paris, Ecole Polytech, CNRS, CMAP, F-91120 Palaiseau, France
[2] Univ Savoie Mt Blanc, Lab Math, CNRS, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
关键词
Faber-Krahn inequality; polygons; shape optimization; numerical approximations; FINITE-ELEMENT; SHAPE OPTIMIZATION; EIGENVALUES; STABILITY; LAPLACIAN; SOBOLEV; DOMAINS; EIGENFUNCTIONS; BOUNDS; 1ST;
D O I
10.5802/jep.250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been conjectured by Polya and Szeg6 seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
引用
收藏
页码:19 / 105
页数:88
相关论文
共 50 条
  • [21] The Faber-Krahn inequality for random/nonautonomous parabolic equations
    Mierczynski, J
    Shen, WX
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) : 101 - 114
  • [22] Stability of the Faber-Krahn inequality in positive Ricci curvature
    Bertrand, J
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (02) : 353 - +
  • [23] A Faber-Krahn inequality for mixed local and nonlocal operators
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (02): : 405 - 448
  • [24] A note on the failure of the Faber-Krahn inequality for the vector Laplacian
    Krejcirik, David
    Lamberti, Pier Domenico
    Zaccaron, Michele
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
  • [25] Towards a reversed Faber-Krahn inequality for the truncated Laplacian
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 723 - 740
  • [26] On reverse Faber-Krahn inequalities
    Anoop, T. V.
    Kumar, K. Ashok
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
  • [27] A Faber-Krahn inequality for the Laplacian with generalised Wentzell boundary conditions
    Kennedy, James
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (03) : 557 - 582
  • [28] A Faber-Krahn inequality for the Laplacian with Generalised Wentzell boundary conditions
    James Kennedy
    Journal of Evolution Equations, 2008, 8 : 557 - 582
  • [29] A Faber-Krahn inequality for Robin problems in any space dimension
    Daners, D
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 767 - 785
  • [30] A Faber-Krahn inequality for the Riesz potential operator for triangles and quadrilaterals
    Mahadevan, Rajesh
    Olivares-Contador, Franco
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (04) : 1935 - 1951