REVERSE FABER-KRAHN INEQUALITY FOR A TRUNCATED LAPLACIAN OPERATOR

被引:1
|
作者
Parini, Enea [1 ]
Rossi, Julio D. [2 ,3 ]
Salort, Ariel [2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,39 Rue Freder Joliot Curie, F-13453 Marseille 13, France
[2] Univ Buenos Aires, IMAS Conicet, Ciudad Univ,Pab 1 1428, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Dept Matemat, FCEyN, Ciudad Univ,Pab 1 1428, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
truncated Laplacian; reverse Faber-Krahn inequality; spectral optimization; EIGENVALUE;
D O I
10.5565/PUBLMAT6622201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a reverse Fab er-Krahn inequality for the principal eigenvalue mu 1(S2) of the fully nonlinear eigenvalue problem (-lambda(N) (D(2)u) = mu u in Omega, u = 0 on partial derivative Omega. Here lambda(N)(D(2)u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain Omega(2) subset of R-N, the inequality mu(1)(S2) <= pi 2/[diam(S Omega)](2) = mu(1)(B-diam(Omega)/2), where diam(Omega) is the diameter of Omega, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of mu(1)(Omega) under different kinds of con-straints.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 50 条