Estimating the ultimate bound and positively invariant set for a generalized Lorenz system

被引:2
|
作者
舒永录 [1 ]
张永浩 [1 ]
机构
[1] College of Mathematics and Physics,Chongqing University
关键词
generalized Lorenz system; ultimate bound; positively invariant set; generalized Lyapunov function;
D O I
暂无
中图分类号
O175.14 [非线性常微分方程];
学科分类号
070104 ;
摘要
A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条
  • [11] Further Results on Ultimate Bound on the Trajectories of the Lorenz System
    Zhang, Fuchen
    Zhang, Guangyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (01) : 221 - 235
  • [12] An ultimate bound on the trajectories of the Lorenz system and its applications
    Pogromsky, AY
    Santoboni, G
    Nijmeijer, H
    NONLINEARITY, 2003, 16 (05) : 1597 - 1605
  • [13] Invariant algebraic surfaces of the generalized Lorenz system
    Xijun Deng
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1443 - 1449
  • [14] Invariant algebraic surfaces of the generalized Lorenz system
    Deng, Xijun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1443 - 1449
  • [15] Comment on 'Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization' [Chaos, Solitons and Fractals 44 (2011) 137-144]
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    CHAOS SOLITONS & FRACTALS, 2013, 54 : 159 - 161
  • [16] Globally attractive and positive invariant set of the Lorenz system
    Yu, Pei
    Liao, Xiaoxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (03): : 757 - 764
  • [17] ONE METHOD OF CONSTRUCTING POSITIVELY INVARIANT-SETS FOR A LORENZ SYSTEM
    LEONOV, GA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1985, 49 (05): : 660 - 663
  • [18] Comments on “Invariant algebraic surfaces of the generalized Lorenz system”
    Antonio Algaba
    Fernando Fernández-Sánchez
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1295 - 1297
  • [19] ONE METHOD OF CONSTRUCTING POSITIVELY INVARIANT SETS FOR A LORENZ SYSTEM.
    Leonov, G.A.
    1600, (49):
  • [20] Comments on "Invariant algebraic surfaces of the generalized Lorenz system"
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 1295 - 1297