An ultimate bound on the trajectories of the Lorenz system and its applications

被引:67
|
作者
Pogromsky, AY
Santoboni, G
Nijmeijer, H
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Cagliari, Dipartimento Fis, I-09042 Cagliari, Italy
关键词
D O I
10.1088/0951-7715/16/5/303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new bound on the trajectories of the Lorenz system is derived. This result is useful to show that the transverse stability of the origin in two Lorenz systems coupled in a drive-response manner is a necessary and sufficient condition for global asymptotic synchrony of the two systems, and to simplify the derivation of the upper bound to the Hausdorff dimension of the Lorenz attractor.
引用
收藏
页码:1597 / 1605
页数:9
相关论文
共 50 条
  • [1] Further Results on Ultimate Bound on the Trajectories of the Lorenz System
    Fuchen Zhang
    Guangyun Zhang
    Qualitative Theory of Dynamical Systems, 2016, 15 : 221 - 235
  • [2] Further Results on Ultimate Bound on the Trajectories of the Lorenz System
    Zhang, Fuchen
    Zhang, Guangyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (01) : 221 - 235
  • [3] Applications of a new ultimate bound on the trajectories of the Lorenz system to synchronization and estimation of the Hausdorff dimension
    Pogromsky, A
    Santoboni, G
    Nijmeijer, H
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 626 - 631
  • [4] NEW RESULTS OF THE ULTIMATE BOUND ON THE TRAJECTORIES OF THE FAMILY OF THE LORENZ SYSTEMS
    Zhang, Fuchen
    Mu, Chunlai
    Zhou, Shouming
    Zheng, Pan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (04): : 1261 - 1276
  • [5] Estimating the ultimate bound and positively invariant set for a generalized Lorenz system
    舒永录
    张永浩
    Journal of Chongqing University(English Edition), 2008, (02) : 151 - 154
  • [6] Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system
    Li, Damei
    Lu, Jun-an
    Wu, Xiaoqun
    Chen, Guanrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 844 - 853
  • [7] Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
    Li, Damei
    Wu, Xiaoqun
    Lu, Jun-an
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1290 - 1296
  • [8] New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system
    Nik, H. Saberi
    Effati, S.
    Saberi-Nadjafi, J.
    JOURNAL OF COMPLEXITY, 2015, 31 (05) : 715 - 730
  • [9] Estimating the bound for the generalized Lorenz system
    郑宇
    张晓丹
    Chinese Physics B, 2010, (01) : 156 - 159
  • [10] Estimating the bound for the generalized Lorenz system
    Zheng Yu
    Zhang Xiao-Dan
    CHINESE PHYSICS B, 2010, 19 (01)