Estimating the ultimate bound and positively invariant set for a generalized Lorenz system

被引:2
|
作者
舒永录 [1 ]
张永浩 [1 ]
机构
[1] College of Mathematics and Physics,Chongqing University
关键词
generalized Lorenz system; ultimate bound; positively invariant set; generalized Lyapunov function;
D O I
暂无
中图分类号
O175.14 [非线性常微分方程];
学科分类号
070104 ;
摘要
A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条
  • [1] Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system
    Li, Damei
    Lu, Jun-an
    Wu, Xiaoqun
    Chen, Guanrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 844 - 853
  • [2] Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
    Li, Damei
    Wu, Xiaoqun
    Lu, Jun-an
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1290 - 1296
  • [3] Estimating the Ultimate Bound and Positively Invariant Set for a Class of Hopfield Networks
    Zhang, Jianxiong
    Tang, Wansheng
    Zheng, Pengsheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (11): : 1735 - 1743
  • [4] Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
    Shu, Yonglu
    Xu, Hongxing
    Zhao, Yunhong
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2852 - 2857
  • [5] Estimating the bound for the generalized Lorenz system
    郑宇
    张晓丹
    Chinese Physics B, 2010, (01) : 156 - 159
  • [6] Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization
    Zhang, Fuchen
    Shu, Yonglu
    Yang, Hongliang
    Li, Xiaowu
    CHAOS SOLITONS & FRACTALS, 2011, 44 (1-3) : 137 - 144
  • [7] Estimating the bound for the generalized Lorenz system
    Zheng Yu
    Zhang Xiao-Dan
    CHINESE PHYSICS B, 2010, 19 (01)
  • [8] Estimating the Globally Attractive Set and Positively Invariant Set of a New Lorenz-like Chaotic System and Its Applications
    Jian, Jigui
    Tu, Zhengwen
    Yu, Hui
    2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 241 - 245
  • [9] Estimating the globally attractive set and positively invariant set of a unified chaotic system
    舒永录
    JournalofChongqingUniversity(EnglishEdition), 2008, (03) : 216 - 220
  • [10] Further Results on Ultimate Bound on the Trajectories of the Lorenz System
    Fuchen Zhang
    Guangyun Zhang
    Qualitative Theory of Dynamical Systems, 2016, 15 : 221 - 235