Estimating the ultimate bound and positively invariant set for a generalized Lorenz system

被引:2
|
作者
舒永录 [1 ]
张永浩 [1 ]
机构
[1] College of Mathematics and Physics,Chongqing University
关键词
generalized Lorenz system; ultimate bound; positively invariant set; generalized Lyapunov function;
D O I
暂无
中图分类号
O175.14 [非线性常微分方程];
学科分类号
070104 ;
摘要
A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条
  • [21] Zero-zero-Hopf bifurcation and ultimate bound estimation of a generalized Lorenz-Stenflo hyperchaotic system
    Chen, Yu-Ming
    Liang, Hai-Hua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3424 - 3432
  • [22] Componentwise ultimate bound and invariant set computation for switched linear systems
    Haimovich, H.
    Seron, M. M.
    AUTOMATICA, 2010, 46 (11) : 1897 - 1901
  • [23] f Estimating the Ultimate Bound for the Generalized Quadratic Autonomous Chaotic Systems
    Wang Pei
    Li Damei
    Wu Xiaoqun
    Lu Jinhu
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 791 - 795
  • [24] The Implicit Maximal Positively Invariant Set
    Rakovic, Sasa V.
    Zhang, Sixing
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 4738 - 4753
  • [25] Applications of a new ultimate bound on the trajectories of the Lorenz system to synchronization and estimation of the Hausdorff dimension
    Pogromsky, A
    Santoboni, G
    Nijmeijer, H
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 626 - 631
  • [26] Estimating ultimate bound and finding topological horseshoe for a new chaotic system
    Deng, Kuibiao
    Yu, Simin
    OPTIK, 2014, 125 (20): : 6044 - 6048
  • [27] Invariant approximations of the minimal robust. positively invariant set
    Rakovic, SV
    Kerrigan, EC
    Kouramas, KI
    Mayne, DQ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) : 406 - 410
  • [28] NEW RESULTS OF THE ULTIMATE BOUND ON THE TRAJECTORIES OF THE FAMILY OF THE LORENZ SYSTEMS
    Zhang, Fuchen
    Mu, Chunlai
    Zhou, Shouming
    Zheng, Pan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (04): : 1261 - 1276
  • [29] Ultimate bound estimation set and chaos synchronization for a financial risk system
    Gao, Wei
    Yan, Li
    Saeedi, Mohammadhossein
    Nik, Hassan Saberi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 154 : 19 - 33
  • [30] New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system
    Nik, H. Saberi
    Effati, S.
    Saberi-Nadjafi, J.
    JOURNAL OF COMPLEXITY, 2015, 31 (05) : 715 - 730