On the Clique-Transversal Number in(Claw,K4 )-Free 4-Regular Graphs

被引:0
|
作者
Ding Guo WANG [1 ,2 ]
Er Fang SHAN [3 ]
Zuo Song LIANG [3 ]
机构
[1] Department of Mathematics,Shanghai University
[2] College of Mathematics Science,Chongqing Normal University
[3] School of Management,Shanghai University
关键词
Graph; clique-transversal set; clique; 4-regular graph; claw-free graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted by τC(G),is the minimum cardinality of a clique-transversal set in G.In this paper,we first present a lower bound on τC(G) and characterize the extremal graphs achieving the lower bound for a connected(claw,K4)-free 4-regular graph G.Furthermore,we show that for any 2-connected(claw,K4)-free 4-regular graph G of order n,its clique-transversal number equals to [n/3].
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [31] The chromatic number of {P5, K4}-free graphs
    Esperet, Louis
    Lemoine, Laetitia
    Maffray, Frederic
    Morel, Gregory
    DISCRETE MATHEMATICS, 2013, 313 (06) : 743 - 754
  • [32] Domination in 4-regular Knodel graphs
    Mojdeh, Doost Ali
    Musawi, S. R.
    Nazari, E.
    OPEN MATHEMATICS, 2018, 16 : 816 - 825
  • [33] Splitter Theorems for 4-Regular Graphs
    Guoli Ding
    Jinko Kanno
    Graphs and Combinatorics, 2010, 26 : 329 - 344
  • [34] Subgraphs of 4-Regular Planar Graphs
    Dowden, Chris
    Addario-Berry, Louigi
    ALGORITHMICA, 2011, 61 (03) : 758 - 776
  • [35] Colouring random 4-regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02): : 309 - 344
  • [36] 4-regular 4-connected Hamiltonian graphs with a bounded number of Hamiltonian cycles
    Thomassen, Carsten
    Zamfirescu, Carol T.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 81 : 334 - 338
  • [37] Edge-Colorings of 4-Regular Graphs with the Minimum Number of Palettes
    Simona Bonvicini
    Giuseppe Mazzuoccolo
    Graphs and Combinatorics, 2016, 32 : 1293 - 1311
  • [38] Edge-Colorings of 4-Regular Graphs with the Minimum Number of Palettes
    Bonvicini, Simona
    Mazzuoccolo, Giuseppe
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1293 - 1311
  • [39] Splitter Theorems for 4-Regular Graphs
    Ding, Guoli
    Kanno, Jinko
    GRAPHS AND COMBINATORICS, 2010, 26 (03) : 329 - 344
  • [40] Subgraphs of 4-Regular Planar Graphs
    Chris Dowden
    Louigi Addario-Berry
    Algorithmica, 2011, 61 : 758 - 776