Edge-Colorings of 4-Regular Graphs with the Minimum Number of Palettes

被引:0
|
作者
Simona Bonvicini
Giuseppe Mazzuoccolo
机构
[1] Università di Modena e Reggio Emilia,Dipartimento di Scienze e Metodi dell’Ingegneria
[2] Università di Modena e Reggio Emilia,Dipartimento di Scienze Fisiche, Informatiche e Matematiche
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Palette index; 4-Regular graphs; Edge-coloring; Even cycle decomposition; Even 2-factor;
D O I
暂无
中图分类号
学科分类号
摘要
A proper edge-coloring of a graph G is an assignment of colors to the edges of G such that adjacent edges receive distinct colors. A proper edge-coloring defines at each vertex the set of colors of its incident edges. Following the terminology introduced by Horňák, Kalinowski, Meszka and Woźniak, we call such a set of colors the palette of the vertex. What is the minimum number of distinct palettes taken over all proper edge-colorings of G? A complete answer is known for complete graphs and cubic graphs. We study in some detail the problem for 4-regular graphs. In particular, we show that certain values of the palette index imply the existence of an even cycle decomposition of size 3 (a partition of the edge-set of a graph into 3 2-regular subgraphs whose connected components are cycles of even length). This result can be extended to 4d-regular graphs. Moreover, in studying the palette index of a 4-regular graph, the following problem arises: does there exist a 4-regular graph whose even cycle decompositions cannot have size smaller than 4?
引用
收藏
页码:1293 / 1311
页数:18
相关论文
共 50 条
  • [1] Edge-Colorings of 4-Regular Graphs with the Minimum Number of Palettes
    Bonvicini, Simona
    Mazzuoccolo, Giuseppe
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1293 - 1311
  • [2] ON THE NUMBER OF EDGE-COLORINGS OF REGULAR BIPARTITE GRAPHS
    SCHRIJVER, A
    DISCRETE MATHEMATICS, 1982, 38 (2-3) : 297 - 301
  • [3] Minimum Number of Palettes in Edge Colorings
    Mirko Horňák
    Rafał Kalinowski
    Mariusz Meszka
    Mariusz Woźniak
    Graphs and Combinatorics, 2014, 30 : 619 - 626
  • [4] Minimum Number of Palettes in Edge Colorings
    Hornak, Mirko
    Kalinowski, Rafal
    Meszka, Mariusz
    Wozniak, Mariusz
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 619 - 626
  • [5] VERTEX SIGNATURES AND EDGE-4-COLORINGS OF 4-REGULAR PLANE GRAPHS
    JAEGER, F
    KOESTER, G
    JOURNAL OF GRAPH THEORY, 1990, 14 (04) : 399 - 403
  • [6] AMALGAMATIONS OF ALMOST REGULAR EDGE-COLORINGS OF SIMPLE GRAPHS
    NASHWILLIAMS, CSA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 43 (03) : 322 - 342
  • [7] EDGE-COLORINGS OF GRAPHS
    ANDERSEN, LD
    MATHEMATICA SCANDINAVICA, 1977, 40 (02) : 161 - 175
  • [8] On the minimum number of bond-edge types and tile types: An approach by edge-colorings of graphs
    Bonvicini, Simona
    Ferrari, Margherita Maria
    DISCRETE APPLIED MATHEMATICS, 2020, 277 : 1 - 13
  • [9] H-colorings for 4-regular graphs
    Malnegro, Analen A.
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [10] MAXIMAL EDGE-COLORINGS OF GRAPHS
    Babinski, S.
    Grzesik, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 403 - 407