On the Clique-Transversal Number in(Claw,K4 )-Free 4-Regular Graphs

被引:0
|
作者
Ding Guo WANG [1 ,2 ]
Er Fang SHAN [3 ]
Zuo Song LIANG [3 ]
机构
[1] Department of Mathematics,Shanghai University
[2] College of Mathematics Science,Chongqing Normal University
[3] School of Management,Shanghai University
关键词
Graph; clique-transversal set; clique; 4-regular graph; claw-free graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted by τC(G),is the minimum cardinality of a clique-transversal set in G.In this paper,we first present a lower bound on τC(G) and characterize the extremal graphs achieving the lower bound for a connected(claw,K4)-free 4-regular graph G.Furthermore,we show that for any 2-connected(claw,K4)-free 4-regular graph G of order n,its clique-transversal number equals to [n/3].
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [21] A revision and extension of results on 4-regular, 4-connected, claw-free graphs
    Gionet, Trevor J., Jr.
    King, Erika L. C.
    Sha, Yixiao
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1225 - 1230
  • [22] Transformations of Assembly Number for 4-Regular Graphs
    Guterman A.E.
    Kreines E.M.
    Ostroukhova N.V.
    Journal of Mathematical Sciences, 2022, 262 (1) : 11 - 26
  • [23] Decycling Number of a class of 4-regular graphs
    Wei, Erling
    Liu, Jiangtao
    Ren, Han
    ARS COMBINATORIA, 2018, 139 : 315 - 326
  • [24] CLIQUE-TRANSVERSAL SETS IN LINE GRAPHS OF CUBIC GRAPHS AND TRIANGLE-FREE GRAPHS
    Kang, Liying
    Shan, Erfang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1423 - 1431
  • [25] Finding independent sets in K-4-free 4-regular connected graphs
    Locke, SC
    Lou, F
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (01) : 85 - 110
  • [26] The Number of Spanning Trees in 4-Regular Simple Graphs
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [27] Decomposition of 4k-regular graphs into k 4-regular K5-free and (K5 - e)-free subgraphs
    Johnson, Rachel
    Mendell, David
    Norris, Samantha
    Plantholt, Michael J.
    Tipnis, Shailesh K.
    DISCRETE MATHEMATICS LETTERS, 2021, 6 : 32 - 37
  • [28] On the AVDTC of 4-regular graphs
    Papaioannou, A.
    Raftopoulou, C.
    DISCRETE MATHEMATICS, 2014, 330 : 20 - 40
  • [29] The signed maximum-clique transversal number of regular graphs
    Wang, Dingguo
    Shan, Erfang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (06) : 741 - 751
  • [30] Disjoint K4− in claw-free graphs with minimum degree at least five
    Yunshu Gao
    Qingsong Zou
    Frontiers of Mathematics in China, 2015, 10 : 53 - 68