On the Clique-Transversal Number in(Claw,K4 )-Free 4-Regular Graphs

被引:0
|
作者
Ding Guo WANG [1 ,2 ]
Er Fang SHAN [3 ]
Zuo Song LIANG [3 ]
机构
[1] Department of Mathematics,Shanghai University
[2] College of Mathematics Science,Chongqing Normal University
[3] School of Management,Shanghai University
关键词
Graph; clique-transversal set; clique; 4-regular graph; claw-free graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted by τC(G),is the minimum cardinality of a clique-transversal set in G.In this paper,we first present a lower bound on τC(G) and characterize the extremal graphs achieving the lower bound for a connected(claw,K4)-free 4-regular graph G.Furthermore,we show that for any 2-connected(claw,K4)-free 4-regular graph G of order n,its clique-transversal number equals to [n/3].
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [41] Linear polynomial-time algorithms to construct 4-connected 4-regular locally connected claw-free graphs
    Li, MingChu
    Xiong, Liming
    Liu, Hong
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 329 - +
  • [42] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [43] The Chromatic Number of Graphs with No Induced Subdivision of K4
    Chen, Guantao
    Chen, Yuan
    Cui, Qing
    Feng, Xing
    Liu, Qinghai
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 719 - 728
  • [44] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [45] Domination in 4-Regular Graphs with Girth 3
    Mohanapriya, N.
    Kumar, S. Vimal
    Vivin, J. Vernold
    Venkatachalam, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (02) : 259 - 264
  • [46] K4$K_4$-free graphs have sparse halves
    Reiher, Christian
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (03) : 1178 - 1195
  • [47] A note on 4-regular distance magic graphs
    Kovar, Petr
    Froncek, Dalibor
    Kovarova, Tereza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 127 - 132
  • [48] 4-regular bipartite matching extendable graphs
    Wang, Xiumei
    Feng, Aifen
    Lin, Yixun
    ARS COMBINATORIA, 2013, 110 : 113 - 128
  • [49] H-colorings for 4-regular graphs
    Malnegro, Analen A.
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [50] Domination in 4-Regular Graphs with Girth 3
    N. Mohanapriya
    S. Vimal Kumar
    J. Vernold Vivin
    M. Venkatachalam
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 259 - 264