Robust Principal Component Analysis using Density Power Divergence

被引:0
|
作者
Roy, Subhrajyoty [1 ]
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, Kolkata 700108, West Bengal, India
关键词
Robust PCA; Eigen Decomposition; Matrix Factorization; Density Power Divergence; Breakdown Point; PROJECTION-PURSUIT APPROACH; DISPERSION MATRICES; OPTIMIZATION; ESTIMATORS; FRAMEWORK; LOCATION; PCA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely employed statistical tool used primarilyfor dimensionality reduction. However, it is known to be adversely affected by the presenceof outlying observations in the sample, which is quite common. Robust PCA methodsusing M-estimators have theoretical benefits, but their robustness drop substantially forhigh dimensional data. On the other end of the spectrum, robust PCA algorithms solv-ing principal component pursuit or similar optimization problems have high breakdown,but lack theoretical richness and demand high computational power compared to the M-estimators. We introduce a novel robust PCA estimator based on the minimum densitypower divergence estimator. This combines the theoretical strength of the M-estimatorsand the minimum divergence estimators with a high breakdown guarantee regardless ofdata dimension. We present a computationally efficient algorithm for this estimate. Ourtheoretical findings are supported by extensive simulations and comparisons with existingrobust PCA methods. We also showcase the proposed algorithm's applicability on twobenchmark data sets and a credit card transactions data set for fraud detection.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [32] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [33] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [34] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [35] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [36] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613
  • [37] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538
  • [38] Power Flow Studies Using Principal Component Analysis
    Bo, Rui
    Li, Fangxing
    2008 40TH NORTH AMERICAN POWER SYMPOSIUM (NAPS 2008), 2008, : 583 - 588
  • [39] Robust genomic prediction and heritability estimation using density power divergence
    Chowdhury, Upama Paul
    Bhattacharjee, Ronit
    Das, Susmita
    Ghosh, Abhik
    CROP SCIENCE, 2025, 65 (01)
  • [40] Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
    Riani, Marco
    Atkinson, Anthony C.
    Corbellini, Aldo
    Perrotta, Domenico
    ENTROPY, 2020, 22 (04)