Adaptive robust principal component analysis

被引:27
|
作者
Liu, Yang [1 ]
Gao, Xinbo [1 ]
Gao, Quanxue [1 ]
Shao, Ling [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ Warwick, WMG Data Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RPCA; Flexibility; Adaptively; PCA; FACTORIZATION;
D O I
10.1016/j.neunet.2019.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning and data mining problems. However, in many real-world applications, RPCA is unable to well encode the intrinsic geometric structure of data, thereby failing to obtain the lowest rank representation from the corrupted data. To cope with this problem, most existing methods impose the smooth manifold, which is artificially constructed by the original data. This reduces the flexibility of algorithms. Moreover, the graph, which is artificially constructed by the corrupted data, is inexact and does not characterize the true intrinsic structure of real data. To tackle this problem, we propose an adaptive RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data. Our proposed model is advantageous due to: (1) The graph is adaptively constructed upon the clean data such that the system is more flexible. (2) Our model simultaneously learns both clean data and similarity matrix that determines the construction of graph. (3) The clean data has the lowest-rank structure that enforces to correct the corruptions. Extensive experiments on several datasets illustrate the effectiveness of our model for clustering and low-rank recovery tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [1] Adaptive Weighted Robust Principal Component Analysis
    Xu, Zhengqin
    Lu, Yang
    Wu, Jiaxing
    He, Rui
    Wu, Shiqian
    Xie, Shoulie
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 19 - 24
  • [2] Robust Principal Component Analysis with Adaptive Neighbors
    Zhang, Rui
    Tong, Hanghang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Robust adaptive algorithms for fast principal component analysis
    Bekhtaoui, Zineb
    Abed-Meraim, Karim
    Meche, Abdelkrim
    DIGITAL SIGNAL PROCESSING, 2022, 127
  • [4] Adaptive rendering based on robust principal component analysis
    Yuan, Hongliang
    Zheng, Changwen
    VISUAL COMPUTER, 2018, 34 (04): : 551 - 562
  • [5] Adaptive rendering based on robust principal component analysis
    Hongliang Yuan
    Changwen Zheng
    The Visual Computer, 2018, 34 : 551 - 562
  • [6] Adaptive Rank Estimate in Robust Principal Component Analysis
    Xu, Zhengqin
    He, Rui
    Xie, Shoulie
    Wu, Shiqian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6573 - 6582
  • [7] Robust recursive principal component analysis modeling for adaptive monitoring
    Jin, HD
    Lee, YH
    Lee, G
    Han, CH
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (02) : 696 - 703
  • [8] Robust principal component analysis with adaptive selection for tuning parameters
    Higuchi, I
    Eguchi, S
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 453 - 471
  • [9] Robust principal component analysis
    Partridge, Matthew
    Jabri, Marwan
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 289 - 298
  • [10] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497