Adaptive robust principal component analysis

被引:27
|
作者
Liu, Yang [1 ]
Gao, Xinbo [1 ]
Gao, Quanxue [1 ]
Shao, Ling [2 ]
Han, Jungong [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ Warwick, WMG Data Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RPCA; Flexibility; Adaptively; PCA; FACTORIZATION;
D O I
10.1016/j.neunet.2019.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning and data mining problems. However, in many real-world applications, RPCA is unable to well encode the intrinsic geometric structure of data, thereby failing to obtain the lowest rank representation from the corrupted data. To cope with this problem, most existing methods impose the smooth manifold, which is artificially constructed by the original data. This reduces the flexibility of algorithms. Moreover, the graph, which is artificially constructed by the corrupted data, is inexact and does not characterize the true intrinsic structure of real data. To tackle this problem, we propose an adaptive RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data. Our proposed model is advantageous due to: (1) The graph is adaptively constructed upon the clean data such that the system is more flexible. (2) Our model simultaneously learns both clean data and similarity matrix that determines the construction of graph. (3) The clean data has the lowest-rank structure that enforces to correct the corruptions. Extensive experiments on several datasets illustrate the effectiveness of our model for clustering and low-rank recovery tasks. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [31] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [32] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [33] Robust and Sparse Principal Component Analysis With Adaptive Loss Minimization for Feature Selection
    Bian, Jintang
    Zhao, Dandan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3601 - 3614
  • [34] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [35] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [36] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [37] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [38] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613
  • [39] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538
  • [40] Adaptive kernel principal component analysis
    Ding, Mingtao
    Tian, Zheng
    Xu, Haixia
    SIGNAL PROCESSING, 2010, 90 (05) : 1542 - 1553