Robust Principal Component Analysis using Density Power Divergence

被引:0
|
作者
Roy, Subhrajyoty [1 ]
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, Kolkata 700108, West Bengal, India
关键词
Robust PCA; Eigen Decomposition; Matrix Factorization; Density Power Divergence; Breakdown Point; PROJECTION-PURSUIT APPROACH; DISPERSION MATRICES; OPTIMIZATION; ESTIMATORS; FRAMEWORK; LOCATION; PCA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely employed statistical tool used primarilyfor dimensionality reduction. However, it is known to be adversely affected by the presenceof outlying observations in the sample, which is quite common. Robust PCA methodsusing M-estimators have theoretical benefits, but their robustness drop substantially forhigh dimensional data. On the other end of the spectrum, robust PCA algorithms solv-ing principal component pursuit or similar optimization problems have high breakdown,but lack theoretical richness and demand high computational power compared to the M-estimators. We introduce a novel robust PCA estimator based on the minimum densitypower divergence estimator. This combines the theoretical strength of the M-estimatorsand the minimum divergence estimators with a high breakdown guarantee regardless ofdata dimension. We present a computationally efficient algorithm for this estimate. Ourtheoretical findings are supported by extensive simulations and comparisons with existingrobust PCA methods. We also showcase the proposed algorithm's applicability on twobenchmark data sets and a credit card transactions data set for fraud detection.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Density-sensitive Robust Fuzzy Kernel Principal Component Analysis technique
    Tao, Xinmin
    Chang, Rui
    Li, Chenxi
    Wang, Ruotong
    Liu, Rui
    NEUROCOMPUTING, 2019, 329 : 210 - 226
  • [42] Density-sensitive Robust Fuzzy Kernel Principal Component Analysis Algorithm
    Tao X.-M.
    Chang R.
    Shen W.
    Li C.-X.
    Wang R.-T.
    Liu Y.-C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (02): : 358 - 372
  • [43] Parallelizing Principal Component Analysis for Robust Facial Recognition using CUDA
    Goodall, Todd
    Gibson, Scott
    Smith, Melissa C.
    2012 SYMPOSIUM ON APPLICATION ACCELERATORS IN HIGH PERFORMANCE COMPUTING (SAAHPC), 2012, : 121 - 124
  • [44] Using the Robust Principal Component Analysis to Identify Incorrect Aerological Data
    A. M. Kozin
    A. D. Lykov
    I. A. Vyazankin
    A. S. Vyazankin
    Russian Meteorology and Hydrology, 2021, 46 : 631 - 639
  • [45] Spectrum Sensing using Robust Principal Component Analysis for Cognitive Radio
    Han, Yonghee
    Lee, Hyuk
    Lee, Jungwoo
    2013 IEEE 78TH VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2013,
  • [46] Using the Robust Principal Component Analysis to Identify Incorrect Aerological Data
    Kozin, A. M.
    Lykov, A. D.
    Vyazankin, I. A.
    Vyazankin, A. S.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2021, 46 (09) : 631 - 639
  • [47] Augmenting Telephony Audio Data using Robust Principal Component Analysis
    Mo, Ronald K.
    Lam, Albert Y. S.
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1794 - 1799
  • [48] Robust Speaker Identification Using Ensembles of Kernel Principal Component Analysis
    Yang, Il-Ho
    Kim, Min-Seok
    So, Byung-Min
    Kim, Myung-Jae
    Yu, Ha-Jin
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 71 - 78
  • [49] Detection of Outliers Using Robust Principal Component Analysis: A Simulation Study
    Pascoal, C.
    Oliveira, M. R.
    Pacheco, A.
    Valadas, R.
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 499 - +
  • [50] Robust and efficient estimation in ordinal response models using the density power divergence
    Pyne, Arijit
    Roy, Subhrajyoty
    Ghosh, Abhik
    Basu, Ayanendranath
    STATISTICS, 2024, 58 (03) : 481 - 520