Robust Principal Component Analysis using Density Power Divergence

被引:0
|
作者
Roy, Subhrajyoty [1 ]
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, Kolkata 700108, West Bengal, India
关键词
Robust PCA; Eigen Decomposition; Matrix Factorization; Density Power Divergence; Breakdown Point; PROJECTION-PURSUIT APPROACH; DISPERSION MATRICES; OPTIMIZATION; ESTIMATORS; FRAMEWORK; LOCATION; PCA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely employed statistical tool used primarilyfor dimensionality reduction. However, it is known to be adversely affected by the presenceof outlying observations in the sample, which is quite common. Robust PCA methodsusing M-estimators have theoretical benefits, but their robustness drop substantially forhigh dimensional data. On the other end of the spectrum, robust PCA algorithms solv-ing principal component pursuit or similar optimization problems have high breakdown,but lack theoretical richness and demand high computational power compared to the M-estimators. We introduce a novel robust PCA estimator based on the minimum densitypower divergence estimator. This combines the theoretical strength of the M-estimatorsand the minimum divergence estimators with a high breakdown guarantee regardless ofdata dimension. We present a computationally efficient algorithm for this estimate. Ourtheoretical findings are supported by extensive simulations and comparisons with existingrobust PCA methods. We also showcase the proposed algorithm's applicability on twobenchmark data sets and a credit card transactions data set for fraud detection.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [22] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [23] Brand power index - using principal component analysis
    Bei, Lien-Ti
    Cheng, Tsung-Chi
    APPLIED ECONOMICS, 2013, 45 (20) : 2954 - 2960
  • [24] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [25] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [26] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [27] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [28] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [29] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [30] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128