Painlevé Analysis and Chiral Solitons from Quantum Hall Effect

被引:0
|
作者
Kudryashov, Nikolay A. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Yildirim, Yakup [6 ,7 ,8 ]
机构
[1] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] Univ Galatzi, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati 800201, Romania
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan, Peoples R China
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
generalized Sch & ouml; dinger equation; chiral soliton; Painlev & eacute; test; traveling wave solution; first integral; CHERN-SIMONS SOLITONS; NONLINEAR SCHRODINGER-EQUATION; REDUCTION; DYNAMICS; WAVES;
D O I
10.37256/cm.5420245313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the generalized Schr & ouml;dinger equation governing chiral solitons. We assess its integrability using the Painlev & eacute; test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlev & eacute; test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlev & eacute; test. Therefore, we establish a general solution for this reduced equation, which we outline accordingly.
引用
收藏
页码:4384 / 4398
页数:15
相关论文
共 50 条
  • [41] Topological solitons in the noncommutative plane and quantum Hall Skyrmions
    Ezawa, ZF
    Tsitsishvili, G
    PHYSICAL REVIEW D, 2005, 72 (08)
  • [42] Chiral Hall effect and chiral electric waves
    Pu, Shi
    Wu, Shang-Yu
    Yang, Di-Lun
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [43] Chiral heat transport in driven quantum Hall and quantum spin Hall edge states
    Arrachea, Liliana
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2011, 84 (23)
  • [44] Chiral transport along magnetic domain walls in the quantum anomalous Hall effect
    Ilan T. Rosen
    Eli J. Fox
    Xufeng Kou
    Lei Pan
    Kang L. Wang
    David Goldhaber-Gordon
    npj Quantum Materials, 2
  • [45] Quantum Hall effect induced by chiral Landau levels in topological semimetal films
    Nguyen, D-H-Minh
    Kobayashi, Koji
    Wichmann, Jan-Erik R.
    Nomura, Kentaro
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [46] Chiral transport along magnetic domain walls in the quantum anomalous Hall effect
    Rosen, Ilan T.
    Fox, Eli J.
    Kou, Xufeng
    Pan, Lei
    Wang, Kang L.
    Goldhaber-Gordon, David
    NPJ QUANTUM MATERIALS, 2017, 2
  • [47] Links between the quantum Hall effect, chiral Boson theories and string theory
    Bracken, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2004, 13 (05) : 961 - 971
  • [48] From quantum confinement to quantum Hall effect in graphene nanostructures
    Guimaraes, M. H. D.
    Shevtsov, O.
    Waintal, X.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2012, 85 (07):
  • [49] Chiral boundary conditions for quantum Hall systems
    Akkermans, E
    Narevich, R
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1097 - 1105
  • [50] Chiral Thermoelectrics with Quantum Hall Edge States
    Sanchez, Rafael
    Sothmann, Bjoern
    Jordan, Andrew N.
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)