Painlevé Analysis and Chiral Solitons from Quantum Hall Effect

被引:0
|
作者
Kudryashov, Nikolay A. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Yildirim, Yakup [6 ,7 ,8 ]
机构
[1] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] Univ Galatzi, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati 800201, Romania
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan, Peoples R China
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
generalized Sch & ouml; dinger equation; chiral soliton; Painlev & eacute; test; traveling wave solution; first integral; CHERN-SIMONS SOLITONS; NONLINEAR SCHRODINGER-EQUATION; REDUCTION; DYNAMICS; WAVES;
D O I
10.37256/cm.5420245313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the generalized Schr & ouml;dinger equation governing chiral solitons. We assess its integrability using the Painlev & eacute; test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlev & eacute; test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlev & eacute; test. Therefore, we establish a general solution for this reduced equation, which we outline accordingly.
引用
收藏
页码:4384 / 4398
页数:15
相关论文
共 50 条
  • [11] Chiral surface states in the bulk quantum Hall effect
    Balents, L
    Fisher, MPA
    PHYSICAL REVIEW LETTERS, 1996, 76 (15) : 2782 - 2785
  • [12] Chiral bosonic field theories and the quantum Hall effect
    Bracken, P
    CANADIAN JOURNAL OF PHYSICS, 2001, 79 (09) : 1121 - 1131
  • [13] Chiral symmetry of microscopic currents in the quantum Hall effect
    Cresti, A
    Grosso, G
    Parravicini, GP
    PHYSICAL REVIEW B, 2004, 69 (23): : 233313 - 1
  • [14] ENGINEERING THE CHIRAL ANOMALY - THE QUANTUM HALL-EFFECT
    SRIVASTAVA, YN
    WIDOM, A
    FRIEDMAN, MH
    LETTERE AL NUOVO CIMENTO, 1985, 42 (03): : 137 - 140
  • [15] Chiral spin currents and quantum Hall effect in nanotubes
    Kleiner, A
    PHYSICAL REVIEW B, 2003, 67 (15)
  • [16] CPN solitons in quantum Hall systems
    Rajaraman, R
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02): : 157 - 162
  • [17] Some new chiral and perturbed chiral solitary waves in quantum Hall effect
    Al-Saleh, Dana
    Hassan, Sz
    Alomair, Ra
    Abdelrahman, Mahmoud A. E.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2023, 17
  • [18] Chiral topological superconductor from the quantum Hall state
    Qi, Xiao-Liang
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    PHYSICAL REVIEW B, 2010, 82 (18)
  • [19] Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
    Braun, Hans-Benjamin
    ADVANCES IN PHYSICS, 2012, 61 (01) : 1 - 116
  • [20] Quantum Hall Effect, Bosonization and Chiral Actions in Higher Dimensions
    Karabali, Dimitra
    6TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS6), 2013, 462