Painlevé Analysis and Chiral Solitons from Quantum Hall Effect

被引:0
|
作者
Kudryashov, Nikolay A. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Yildirim, Yakup [6 ,7 ,8 ]
机构
[1] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] Univ Galatzi, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati 800201, Romania
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan, Peoples R China
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
generalized Sch & ouml; dinger equation; chiral soliton; Painlev & eacute; test; traveling wave solution; first integral; CHERN-SIMONS SOLITONS; NONLINEAR SCHRODINGER-EQUATION; REDUCTION; DYNAMICS; WAVES;
D O I
10.37256/cm.5420245313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the generalized Schr & ouml;dinger equation governing chiral solitons. We assess its integrability using the Painlev & eacute; test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlev & eacute; test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlev & eacute; test. Therefore, we establish a general solution for this reduced equation, which we outline accordingly.
引用
收藏
页码:4384 / 4398
页数:15
相关论文
共 50 条
  • [21] Quantum thermal Hall effect of chiral spinons on a kagome strip
    Tikhonov, Pavel
    Shimshoni, Efrat
    PHYSICAL REVIEW B, 2019, 99 (17)
  • [22] Magnetoresistance of chiral surface states in the integer quantum Hall effect
    Druist, DP
    Gwinn, EG
    Maranowski, KD
    Gossard, AC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2000, 6 (1-4): : 619 - 622
  • [23] IMPLICATIONS OF THE CHIRAL ANOMALY FOR QUANTUM HALL-EFFECT DEVICES
    WIDOM, A
    FRIEDMAN, MH
    SRIVASTAVA, YN
    PHYSICAL REVIEW B, 1985, 31 (10): : 6588 - 6591
  • [24] Observation of chiral surface states in the integer quantum Hall effect
    Druist, DP
    Turley, PJ
    Maranowski, KD
    Gwinn, EG
    Gossard, AC
    PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 365 - 368
  • [25] Quantum Hall effect, chiral Luttinger liquids and fractional charges
    Roche, P
    Rodriguez, V
    Glattli, DC
    COMPTES RENDUS PHYSIQUE, 2002, 3 (06) : 717 - 732
  • [26] Entanglement spectroscopy of chiral edge modes in the quantum Hall effect
    Estienne, Benoit
    Stephan, Jean-Marie
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [27] Chiral symmetry breaking and the quantum Hall effect in monolayer graphene
    Roy, Bitan
    Kennett, Malcolm P.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2014, 90 (20):
  • [28] CHIRAL BOSON, CHIRAL VACUUM AND EDGE STATES IN THE FRACTIONAL QUANTUM HALL-EFFECT
    YUN, SM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (07): : 1181 - 1195
  • [29] Dissipative chiral channels, Ohmic scaling, and half-integer Hall conductivity from relativistic quantum Hall effect
    Zhou, Humian
    Chen, Chui-Zhen
    Sun, Qing-Feng
    Xie, X. C.
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [30] Solitons and quasielectrons in the quantum Hall matrix model
    Hansson, TH
    Kailasvuori, J
    Karlhede, A
    von Unge, R
    PHYSICAL REVIEW B, 2005, 72 (20)