Painlevé Analysis and Chiral Solitons from Quantum Hall Effect

被引:0
|
作者
Kudryashov, Nikolay A. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Yildirim, Yakup [6 ,7 ,8 ]
机构
[1] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] Univ Galatzi, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati 800201, Romania
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan, Peoples R China
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
generalized Sch & ouml; dinger equation; chiral soliton; Painlev & eacute; test; traveling wave solution; first integral; CHERN-SIMONS SOLITONS; NONLINEAR SCHRODINGER-EQUATION; REDUCTION; DYNAMICS; WAVES;
D O I
10.37256/cm.5420245313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the generalized Schr & ouml;dinger equation governing chiral solitons. We assess its integrability using the Painlev & eacute; test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlev & eacute; test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlev & eacute; test. Therefore, we establish a general solution for this reduced equation, which we outline accordingly.
引用
收藏
页码:4384 / 4398
页数:15
相关论文
共 50 条
  • [31] Chiral actions from phase space (quantum Hall) droplets
    Polychronakos, AP
    NUCLEAR PHYSICS B, 2005, 705 (03) : 457 - 476
  • [32] Cooling of chiral heat transport in the quantum Hall effect regime of graphene
    Slizovskiy, Sergey
    Fal'ko, Vladimir
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [33] Spontaneous Quantum Hall Effect in chiral d-density waves
    Kotetes, P.
    Varelogiannis, G.
    EPL, 2008, 84 (03)
  • [34] THE CHIRAL BOSON THEORY AND EDGE STATES IN THE QUANTUM HALL-EFFECT
    MYUNG, YS
    MODERN PHYSICS LETTERS A, 1993, 8 (14) : 1297 - 1303
  • [35] CHIRAL NONTOPOLOGICAL SOLITONS WITH PERTURBATIVE QUANTUM PIONS
    WILLIAMS, AG
    DODD, LR
    PHYSICAL REVIEW D, 1988, 37 (07) : 1971 - 1981
  • [36] Alfven solitons in magnetofluiddynamics with Hall effect
    Carbonaro, P
    Giambò, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (03): : 295 - 309
  • [37] Quantized nonlinear Hall effect from chiral monopole
    Peshcherenko, Nikolai
    Felser, Claudia
    Zhang, Yang
    PHYSICAL REVIEW B, 2024, 110 (15)
  • [38] BRANE REALIZATIONS OF QUANTUM HALL SOLITONS AND LIE ALGEBRAS
    Belhaj, A.
    Elrhalami, A.
    Fahssi, N. -E.
    Khan, M. J. I.
    Saidi, E. H.
    Segui, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (03)
  • [39] ON MASS GAP IN TYPE IIB QUANTUM HALL SOLITONS
    Belhaj, A.
    Khan, M. J. I.
    Saidi, E. H.
    Segui, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
  • [40] Detection of fractional solitons in quantum spin Hall systems
    Fleckenstein, C.
    Ziani, N. Traverso
    Trauzettel, B.
    EPL, 2018, 121 (05)