Painlevé Analysis and Chiral Solitons from Quantum Hall Effect

被引:0
|
作者
Kudryashov, Nikolay A. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Zhou, Qin [5 ]
Yildirim, Yakup [6 ,7 ,8 ]
机构
[1] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] Univ Galatzi, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati 800201, Romania
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan, Peoples R China
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
generalized Sch & ouml; dinger equation; chiral soliton; Painlev & eacute; test; traveling wave solution; first integral; CHERN-SIMONS SOLITONS; NONLINEAR SCHRODINGER-EQUATION; REDUCTION; DYNAMICS; WAVES;
D O I
10.37256/cm.5420245313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the generalized Schr & ouml;dinger equation governing chiral solitons. We assess its integrability using the Painlev & eacute; test for nonlinear partial differential equations. Our analysis shows that the equation fails the Painlev & eacute; test, suggesting the Cauchy problem cannot be solved using the inverse scattering transform. However, through a traveling wave reduction, we find that the resulting nonlinear ordinary differential equation does satisfy the Painlev & eacute; test. Therefore, we establish a general solution for this reduced equation, which we outline accordingly.
引用
收藏
页码:4384 / 4398
页数:15
相关论文
共 50 条
  • [1] Edge solitons in the quantum Hall effect
    Hassaïne, M
    Horváthy, PA
    Yéra, JC
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 474 - 480
  • [2] Skyrmions in the quantum Hall effect and noncommutative solitons
    Pasquier, V
    PHYSICS LETTERS B, 2000, 490 (3-4) : 258 - 262
  • [3] Contour dynamics, waves, and solitons in the quantum Hall effect
    Wexler, C
    Dorsey, AT
    PHYSICAL REVIEW B, 1999, 60 (15): : 10971 - 10983
  • [4] solitons in quantum Hall systems
    R. Rajaraman
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 157 - 162
  • [5] Painlevé analysis and optical solitons for a concatenated model
    Kudryashov N.A.
    Biswas A.
    Borodina A.G.
    Yıldırım Y.
    Alshehri H.M.
    Optik, 2023, 272
  • [6] Painlev? analysis and optical solitons for a concatenated model
    Kudryashov, Nikolay A.
    Biswas, Anjan
    Borodina, Agniya G.
    Yildirim, Yakup
    Alshehri, Hashim M.
    OPTIK, 2023, 272
  • [7] Chiral quantum spin solitons
    Braun, HB
    Loss, D
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) : 6107 - 6109
  • [8] Chiral quantum spin solitons
    Braun, Hans-Benjamin
    Loss, Daniel
    Journal of Applied Physics, 1996, 79 (8 pt 2B):
  • [9] Chiral solitons in a quantum potential
    Lee, Jyh-Hao
    Pashaev, O. K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) : 986 - 994
  • [10] Chiral solitons in a quantum potential
    Jyh-Hao Lee
    O. K. Pashaev
    Theoretical and Mathematical Physics, 2009, 160 : 986 - 994