A micromechanical model for the elastoplasticity and fracture of WC-Co hardmetals at large specimens scale

被引:0
|
作者
Machado, Pedro Vinicius Sousa [1 ]
Caner, Ferhun C. [1 ,2 ]
Llanes, Luis [1 ,3 ]
Jimenez-Pique, Emilio [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Dept Mat Sci & Engn, BarcelonaTech, EEBE Campus Diagonal Besos, Barcelona 08019, Spain
[2] Univ Politecn Cataluna, Inst Energy Technol, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
[3] Univ Politecn Cataluna, Barcelona Res Ctr Multiscale Sci & Engn, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
关键词
Microplane model; Finite element analysis; WC-co Hardmetals; Plasticity; Fracture; FINITE-ELEMENT; MICROPLANE MODEL; CRACK-GROWTH; CEMENTED CARBIDES; CONCRETE; DEFORMATION; PROPAGATION; STRENGTH; BEHAVIOR; M7;
D O I
10.1016/j.ijrmhm.2024.107034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study a new constitutive model is developed for finite element modeling of tungsten carbide-cobalt (WCCo) hardmetals at large specimen level, called the microplane model for hardmetals. The model is first calibrated against the stress-strain test data under uniaxial tension and compression obtained from specimens with different grain sizes and cobalt contents. Then, with fixed calibrated model parameters, it is used to predict other experimental data obtained from uniaxial tension, uniaxial compression and four-point bending tests from the literature. It is shown to predict very well the experimental data on a wide range of cobalt weight fractions (from 3 to 27 wt%) and WC grain sizes (from 0.35to 1.85 mu m). The model needs as inputs only four commonly available material constants: the cobalt content, the grain size, the uniaxial compressive strength, and the uniaxial tensile strength.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On the contiguity of carbide phase in WC-Co hardmetals
    Golovchan, VT
    Litoshenko, NV
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2003, 21 (5-6): : 241 - 244
  • [22] Grain boundaries in WC-Co hardmetals with facetted and rounded WC grains
    Zaitsev, A. A.
    Sidorenko, D.
    Konyashin, I
    MATERIALS LETTERS, 2022, 306
  • [23] The stress-strain behavior of WC-Co hardmetals
    Golovchan, V. T.
    Litoshenko, N. V.
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (03) : 593 - 597
  • [24] DIFFUSION BONDING OF HARDMETALS (WC-CO) WITH METALLIC INTERLAYERS
    DESALAZAR, JMG
    URENA, A
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1093 - 1098
  • [25] On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Dorn, F.
    Sologubenko, A.
    Weirich, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2009, 27 (02): : 234 - 243
  • [26] Sintering plus HIP of ultrafine WC-Co hardmetals
    Ordonez, A.
    Gonzalez, R.
    Sanchez, J. M.
    ADVANCED STRUCTURAL MATERIALS III, 2007, 560 : 121 - +
  • [27] Influence of boron on diamond growth on WC-Co hardmetals
    Kalss, W
    Bohr, S
    Haubner, R
    Lux, B
    Griesser, M
    Spicka, H
    Grasserbauer, M
    Wurzinger, P
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1996, 14 (1-3): : 137 - 144
  • [28] HIP after sintering of ultrafine WC-Co hardmetals
    Sánchez, JM
    Ordóñez, A
    González, R
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2005, 23 (03): : 193 - 198
  • [29] A new approach to fabrication of gradient WC-Co hardmetals
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Sologubenko, A.
    Weirich, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (02): : 228 - 237
  • [30] FATIGUE-CRACK GROWTH IN WC-CO HARDMETALS
    ALMOND, EA
    ROEBUCK, B
    METALS TECHNOLOGY, 1980, 7 (FEB): : 83 - 85