A micromechanical model for the elastoplasticity and fracture of WC-Co hardmetals at large specimens scale

被引:0
|
作者
Machado, Pedro Vinicius Sousa [1 ]
Caner, Ferhun C. [1 ,2 ]
Llanes, Luis [1 ,3 ]
Jimenez-Pique, Emilio [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Dept Mat Sci & Engn, BarcelonaTech, EEBE Campus Diagonal Besos, Barcelona 08019, Spain
[2] Univ Politecn Cataluna, Inst Energy Technol, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
[3] Univ Politecn Cataluna, Barcelona Res Ctr Multiscale Sci & Engn, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
关键词
Microplane model; Finite element analysis; WC-co Hardmetals; Plasticity; Fracture; FINITE-ELEMENT; MICROPLANE MODEL; CRACK-GROWTH; CEMENTED CARBIDES; CONCRETE; DEFORMATION; PROPAGATION; STRENGTH; BEHAVIOR; M7;
D O I
10.1016/j.ijrmhm.2024.107034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study a new constitutive model is developed for finite element modeling of tungsten carbide-cobalt (WCCo) hardmetals at large specimen level, called the microplane model for hardmetals. The model is first calibrated against the stress-strain test data under uniaxial tension and compression obtained from specimens with different grain sizes and cobalt contents. Then, with fixed calibrated model parameters, it is used to predict other experimental data obtained from uniaxial tension, uniaxial compression and four-point bending tests from the literature. It is shown to predict very well the experimental data on a wide range of cobalt weight fractions (from 3 to 27 wt%) and WC grain sizes (from 0.35to 1.85 mu m). The model needs as inputs only four commonly available material constants: the cobalt content, the grain size, the uniaxial compressive strength, and the uniaxial tensile strength.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Sintering behaviour and properties of WC-Co hardmetals in relation to the WC powder properties
    Gille, G
    Leitner, G
    Roebuck, B
    ADVANCES IN HARD MATERIALS PRODUCTION, 1996, : 195 - 210
  • [32] ORIGIN OF WC SUBSTRUCTURE AND THE EFFECT OF PROCESSING ON THE MICROSTRUCTURE OF WC-Co HARDMETALS.
    Almond, Eric A.
    Roebuck, Bryan
    High Temperatures - High Pressures, 1982, 14 (02) : 143 - 154
  • [33] Effect of Heat Treatment on Structure and Properties of WC-Co Hardmetals
    Yang Jinhui Lai Hoyi (Institute of Mining and Mineral Engineering)(Department of Materials Science and Engineering
    北京科技大学学报, 1991, (S2) : 29 - 34
  • [34] Surface finishing: Impact on tribological characteristics of WC-Co hardmetals
    Bonny, K.
    De Baets, P.
    Quintelier, J.
    Vleugels, J.
    Jiang, D.
    Van der Biest, O.
    Lauwers, B.
    Liu, W.
    TRIBOLOGY INTERNATIONAL, 2010, 43 (1-2) : 40 - 54
  • [35] CORROSION, EROSION CORROSION, AND THE FLEXURAL STRENGTH OF WC-CO HARDMETALS
    TOMLINSON, WJ
    MOLYNEUX, ID
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (06) : 1605 - 1608
  • [36] On the abrasion of ultrafine WC-Co hardmetals by small SiC abrasive
    Krakhmalev, P. V.
    TRIBOLOGY LETTERS, 2008, 30 (01) : 35 - 39
  • [37] Influence of microstructure on the abrasive edge wear of WC-Co hardmetals
    Krakhmalev, P. V.
    Rodil, T. Adeva
    Bergstrom, J.
    WEAR, 2007, 263 : 240 - 245
  • [38] Influence of cobalt content on the fatigue strength of WC-Co hardmetals
    Nakajima, Takeshi
    Hosokawa, Hiroyuki
    Shimojima, Koji
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 1201 - +
  • [39] Oxidation-induced strength degradation of WC-Co hardmetals
    Casas, B
    Ramis, X
    Anglada, M
    Salla, JM
    Llanes, L
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2001, 19 (4-6): : 303 - 309
  • [40] NbC as grain growth inhibitor and carbide in WC-Co hardmetals
    Huang, S. G.
    Liu, R. L.
    Li, L.
    Van der Biest, O.
    Vleugels, J.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (05): : 389 - 395