A micromechanical model for the elastoplasticity and fracture of WC-Co hardmetals at large specimens scale

被引:0
|
作者
Machado, Pedro Vinicius Sousa [1 ]
Caner, Ferhun C. [1 ,2 ]
Llanes, Luis [1 ,3 ]
Jimenez-Pique, Emilio [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Dept Mat Sci & Engn, BarcelonaTech, EEBE Campus Diagonal Besos, Barcelona 08019, Spain
[2] Univ Politecn Cataluna, Inst Energy Technol, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
[3] Univ Politecn Cataluna, Barcelona Res Ctr Multiscale Sci & Engn, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
关键词
Microplane model; Finite element analysis; WC-co Hardmetals; Plasticity; Fracture; FINITE-ELEMENT; MICROPLANE MODEL; CRACK-GROWTH; CEMENTED CARBIDES; CONCRETE; DEFORMATION; PROPAGATION; STRENGTH; BEHAVIOR; M7;
D O I
10.1016/j.ijrmhm.2024.107034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study a new constitutive model is developed for finite element modeling of tungsten carbide-cobalt (WCCo) hardmetals at large specimen level, called the microplane model for hardmetals. The model is first calibrated against the stress-strain test data under uniaxial tension and compression obtained from specimens with different grain sizes and cobalt contents. Then, with fixed calibrated model parameters, it is used to predict other experimental data obtained from uniaxial tension, uniaxial compression and four-point bending tests from the literature. It is shown to predict very well the experimental data on a wide range of cobalt weight fractions (from 3 to 27 wt%) and WC grain sizes (from 0.35to 1.85 mu m). The model needs as inputs only four commonly available material constants: the cobalt content, the grain size, the uniaxial compressive strength, and the uniaxial tensile strength.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] FRACTURE TOUGHNESS AND FRACTURE OF WC-CO COMPOSITES
    CHERMANT, JL
    OSTERSTOCK, F
    JOURNAL OF MATERIALS SCIENCE, 1976, 11 (10) : 1939 - 1951
  • [42] Some Trends in Improving WC-Co Hardmetals. II. Functionally Graded Hardmetals
    Laptiev, A., V
    POWDER METALLURGY AND METAL CERAMICS, 2019, 58 (3-4) : 170 - 183
  • [43] Heat Treatment of WC-Co Hardmetals and Transformation Temperature of Cobalt Phase
    赖和怡
    杨金辉
    北京科技大学学报, 1989, (06) : 575 - 580
  • [44] A computational framework for micromechanical modelling of WC-Co composites
    Machado, Pedro Vinicius Sousa
    Caner, Ferhun C.
    Llanes, Luis
    Pique, Emilio Jimenez
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 111
  • [45] Influence of sintering parameters on the microstructure and mechanical properties of WC-Co hardmetals
    Bertalan, Claudio
    Moseley, Steven
    Pereira, Leonel
    Useldinger, Ralph
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 118
  • [46] Preparation and sintering of WC-Co composite powders for coarse grained WC-8Co hardmetals
    Su, Wei
    Sun, Yexi
    Wang, Huifeng
    Zhang, Xianqi
    Ruan, Jianming
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 45 : 80 - 85
  • [47] FRACTURE STRENGTH OF WC-Co ALLOYS
    Cao Shunhua Powder Metallurgy National Laboratory
    TransactionsofNonferrousMetalsSocietyofChina, 1997, (03) : 55 - 57
  • [48] On bending strength of superhard composite materials based on WC-Co hardmetals
    Golovchan, V. T.
    STRENGTH OF MATERIALS, 2009, 41 (06) : 603 - 612
  • [49] INDENTATION FRACTURE OF WC-CO CERMETS
    SHETTY, DK
    WRIGHT, IG
    MINCER, PN
    CLAUER, AH
    JOURNAL OF MATERIALS SCIENCE, 1985, 20 (05) : 1873 - 1882
  • [50] FRACTURE MECHANISMS IN WC-CO ALLOYS
    LUYCKX, SB
    SOUTH AFRICAN JOURNAL OF PHYSICS - SUID-AFRIKAANSE TYDSKRIF VIR FISIKA, 1981, 4 (04): : 113 - 116