A micromechanical model for the elastoplasticity and fracture of WC-Co hardmetals at large specimens scale

被引:0
|
作者
Machado, Pedro Vinicius Sousa [1 ]
Caner, Ferhun C. [1 ,2 ]
Llanes, Luis [1 ,3 ]
Jimenez-Pique, Emilio [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Dept Mat Sci & Engn, BarcelonaTech, EEBE Campus Diagonal Besos, Barcelona 08019, Spain
[2] Univ Politecn Cataluna, Inst Energy Technol, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
[3] Univ Politecn Cataluna, Barcelona Res Ctr Multiscale Sci & Engn, BarcelonaTech, Campus Diagonal Besos, Barcelona 08019, Spain
关键词
Microplane model; Finite element analysis; WC-co Hardmetals; Plasticity; Fracture; FINITE-ELEMENT; MICROPLANE MODEL; CRACK-GROWTH; CEMENTED CARBIDES; CONCRETE; DEFORMATION; PROPAGATION; STRENGTH; BEHAVIOR; M7;
D O I
10.1016/j.ijrmhm.2024.107034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study a new constitutive model is developed for finite element modeling of tungsten carbide-cobalt (WCCo) hardmetals at large specimen level, called the microplane model for hardmetals. The model is first calibrated against the stress-strain test data under uniaxial tension and compression obtained from specimens with different grain sizes and cobalt contents. Then, with fixed calibrated model parameters, it is used to predict other experimental data obtained from uniaxial tension, uniaxial compression and four-point bending tests from the literature. It is shown to predict very well the experimental data on a wide range of cobalt weight fractions (from 3 to 27 wt%) and WC grain sizes (from 0.35to 1.85 mu m). The model needs as inputs only four commonly available material constants: the cobalt content, the grain size, the uniaxial compressive strength, and the uniaxial tensile strength.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] FRACTURE TOPOGRAPHY OF WC-CO HARDMETALS
    LEA, C
    ROEBUCK, B
    METAL SCIENCE, 1981, 15 (06): : 262 - 266
  • [2] Nanoindentation of WC-Co hardmetals
    Duszova, Annamaria
    Halgas, Radoslav
    Bl'anda, Marek
    Hvizdos, Pavol
    Lofaj, Frantisek
    Dusza, Jan
    Morgiel, Jerzy
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (12) : 2227 - 2232
  • [3] Grinding of WC-Co hardmetals
    Hegeman, JBJW
    De Hosson, JTM
    de With, G
    WEAR, 2001, 248 (1-2) : 187 - 196
  • [4] Fracture toughness measurement of WC-Co hardmetals by indentation method
    Szutkowska, M
    JOURNAL OF ADVANCED MATERIALS, 1999, 31 (03): : 3 - 7
  • [5] Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide
    Szutkowska, M.
    Boniecki, M.
    Cygan, S.
    Kalinka, A.
    Grilli, M. L.
    Balos, S.
    E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS, 2018, 329
  • [6] DEFORMATION AND FRACTURE PROCESSES AND THE PHYSICAL METALLURGY OF WC-CO HARDMETALS
    ROEBUCK, B
    ALMOND, EA
    INTERNATIONAL MATERIALS REVIEWS, 1988, 33 (02) : 90 - 110
  • [7] Fracture modelling of WC-Co hardmetals using crystal plasticity theory and the Gurson model
    Connolly, P
    McHugh, PE
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1999, 22 (01) : 77 - 86
  • [8] Fracture modelling of WC-Co hardmetals using crystal plasticity theory and the Gurson model
    Connolly, P.
    McHugh, P.E.
    Fatigue and Fracture of Engineering Materials and Structures, 1999, 22 (01): : 77 - 86
  • [9] Ultrasonic evaluation of WC-Co hardmetals
    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
    Wuhan Ligong Daxue Xuebao, 2007, 10 (153-157):
  • [10] Reactive Sintering of Bimodal WC-Co Hardmetals
    Tarraste, Marek
    Juhani, Kristjan
    Pirso, Jueri
    Viljus, Mart
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2015, 21 (03): : 382 - 385